Distance-based clustering challenges for unbiased benchmarking studies
Abstract Benchmark datasets with predefined cluster structures and high-dimensional biomedical datasets outline the challenges of cluster analysis: clustering algorithms are limited in their clustering ability in the presence of clusters defining distance-based structures resulting in a biased clust...
Enregistré dans:
Auteur principal: | Michael C. Thrun |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/80c3566d0abb42cbb16bd430d6a3c752 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Publisher Correction: Distance-based clustering challenges for unbiased benchmarking studies
par: Michael C. Thrun
Publié: (2021) -
Cluster efficiency study through benchmarking
par: Manuela Tvaronavičienė, et autres
Publié: (2015) -
Pattern of inflammatory immune response determines the clinical course and outcome of COVID-19: unbiased clustering analysis
par: Eunyoung Emily Lee, et autres
Publié: (2021) -
Entanglement witnesses from mutually unbiased measurements
par: Katarzyna Siudzińska, et autres
Publié: (2021) -
Head-to-head comparison of clustering methods for heterogeneous data: a simulation-driven benchmark
par: Gregoire Preud’homme, et autres
Publié: (2021)