A polar dual to the momentum of toric Fano manifolds

We introduce an invariant on the Fano polytope of a toric Fano manifold as a polar dual counterpart to the momentum of its polar dual polytope. Moreover, we prove that if the momentum of the polar dual polytope is equal to zero, then the dual invariant on a Fano polytope vanishes.

Guardado en:
Detalles Bibliográficos
Autor principal: Sano Yuji
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/80d5fe69f24a461db9ddfec531b47970
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:80d5fe69f24a461db9ddfec531b47970
record_format dspace
spelling oai:doaj.org-article:80d5fe69f24a461db9ddfec531b479702021-12-05T14:10:45ZA polar dual to the momentum of toric Fano manifolds2300-744310.1515/coma-2020-0116https://doaj.org/article/80d5fe69f24a461db9ddfec531b479702021-07-01T00:00:00Zhttps://doi.org/10.1515/coma-2020-0116https://doaj.org/toc/2300-7443We introduce an invariant on the Fano polytope of a toric Fano manifold as a polar dual counterpart to the momentum of its polar dual polytope. Moreover, we prove that if the momentum of the polar dual polytope is equal to zero, then the dual invariant on a Fano polytope vanishes.Sano YujiDe Gruyterarticlekähler-einstein metricstoric fano manifoldsfutaki invariantfano polytopes14m2514j4532q20MathematicsQA1-939ENComplex Manifolds, Vol 8, Iss 1, Pp 230-246 (2021)
institution DOAJ
collection DOAJ
language EN
topic kähler-einstein metrics
toric fano manifolds
futaki invariant
fano polytopes
14m25
14j45
32q20
Mathematics
QA1-939
spellingShingle kähler-einstein metrics
toric fano manifolds
futaki invariant
fano polytopes
14m25
14j45
32q20
Mathematics
QA1-939
Sano Yuji
A polar dual to the momentum of toric Fano manifolds
description We introduce an invariant on the Fano polytope of a toric Fano manifold as a polar dual counterpart to the momentum of its polar dual polytope. Moreover, we prove that if the momentum of the polar dual polytope is equal to zero, then the dual invariant on a Fano polytope vanishes.
format article
author Sano Yuji
author_facet Sano Yuji
author_sort Sano Yuji
title A polar dual to the momentum of toric Fano manifolds
title_short A polar dual to the momentum of toric Fano manifolds
title_full A polar dual to the momentum of toric Fano manifolds
title_fullStr A polar dual to the momentum of toric Fano manifolds
title_full_unstemmed A polar dual to the momentum of toric Fano manifolds
title_sort polar dual to the momentum of toric fano manifolds
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/80d5fe69f24a461db9ddfec531b47970
work_keys_str_mv AT sanoyuji apolardualtothemomentumoftoricfanomanifolds
AT sanoyuji polardualtothemomentumoftoricfanomanifolds
_version_ 1718371764875034624