A polar dual to the momentum of toric Fano manifolds
We introduce an invariant on the Fano polytope of a toric Fano manifold as a polar dual counterpart to the momentum of its polar dual polytope. Moreover, we prove that if the momentum of the polar dual polytope is equal to zero, then the dual invariant on a Fano polytope vanishes.
Guardado en:
Autor principal: | Sano Yuji |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/80d5fe69f24a461db9ddfec531b47970 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Toric extremal Kähler-Ricci solitons are Kähler-Einstein
por: Calamai Simone, et al.
Publicado: (2017) -
Kähler-Einstein metrics: Old and New
por: Angella Daniele, et al.
Publicado: (2017) -
Differential operators on almost-Hermitian manifolds and harmonic forms
por: Tardini Nicoletta, et al.
Publicado: (2020) -
On the conformally k-th Gauduchon condition and the conformally semi-Kähler condition on almost complex manifolds
por: Kawamura,Masaya
Publicado: (2021) -
Terahertz sensing based on tunable fano resonance in graphene metamaterial
por: Wei Cui, et al.
Publicado: (2021)