A polar dual to the momentum of toric Fano manifolds
We introduce an invariant on the Fano polytope of a toric Fano manifold as a polar dual counterpart to the momentum of its polar dual polytope. Moreover, we prove that if the momentum of the polar dual polytope is equal to zero, then the dual invariant on a Fano polytope vanishes.
Enregistré dans:
Auteur principal: | Sano Yuji |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/80d5fe69f24a461db9ddfec531b47970 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Toric extremal Kähler-Ricci solitons are Kähler-Einstein
par: Calamai Simone, et autres
Publié: (2017) -
Kähler-Einstein metrics: Old and New
par: Angella Daniele, et autres
Publié: (2017) -
Differential operators on almost-Hermitian manifolds and harmonic forms
par: Tardini Nicoletta, et autres
Publié: (2020) -
On the conformally k-th Gauduchon condition and the conformally semi-Kähler condition on almost complex manifolds
par: Kawamura,Masaya
Publié: (2021) -
Terahertz sensing based on tunable fano resonance in graphene metamaterial
par: Wei Cui, et autres
Publié: (2021)