A Genetically Encoded Picolyl Azide for Improved Live Cell Copper Click Labeling

Bioorthogonal chemistry allows rapid and highly selective reactivity in biological environments. The copper-catalyzed azide–alkyne cycloaddition (CuAAC) is a classic bioorthogonal reaction routinely used to modify azides or alkynes that have been introduced into biomolecules. Amber suppression is an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Birthe Meineke, Johannes Heimgärtner, Alexander J. Craig, Michael Landreh, Lindon W. K. Moodie, Simon J. Elsässer
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/80dfbc6fdcfb4fc3aa01db18bc5f6838
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:80dfbc6fdcfb4fc3aa01db18bc5f6838
record_format dspace
spelling oai:doaj.org-article:80dfbc6fdcfb4fc3aa01db18bc5f68382021-11-11T10:21:53ZA Genetically Encoded Picolyl Azide for Improved Live Cell Copper Click Labeling2296-264610.3389/fchem.2021.768535https://doaj.org/article/80dfbc6fdcfb4fc3aa01db18bc5f68382021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fchem.2021.768535/fullhttps://doaj.org/toc/2296-2646Bioorthogonal chemistry allows rapid and highly selective reactivity in biological environments. The copper-catalyzed azide–alkyne cycloaddition (CuAAC) is a classic bioorthogonal reaction routinely used to modify azides or alkynes that have been introduced into biomolecules. Amber suppression is an efficient method for incorporating such chemical handles into proteins on the ribosome, in which noncanonical amino acids (ncAAs) are site specifically introduced into the polypeptide in response to an amber (UAG) stop codon. A variety of ncAA structures containing azides or alkynes have been proven useful for performing CuAAC chemistry on proteins. To improve CuAAC efficiency, biologically incorporated alkyne groups can be reacted with azide substrates that contain copper-chelating groups. However, the direct incorporation of copper-chelating azides into proteins has not been explored. To remedy this, we prepared the ncAA paz-lysine (PazK), which contains a picolyl azide motif. We show that PazK is efficiently incorporated into proteins by amber suppression in mammalian cells. Furthermore, PazK-labeled proteins show improved reactivity with alkyne reagents in CuAAC.Birthe MeinekeBirthe MeinekeJohannes HeimgärtnerJohannes HeimgärtnerAlexander J. CraigMichael LandrehLindon W. K. MoodieLindon W. K. MoodieSimon J. ElsässerSimon J. ElsässerFrontiers Media S.A.articlegenetic code expansionamber suppressionnoncanonical amino acidbioorthogonal chemistryclick chemistrycopper catalyzed azide–alkyne cycloaddition (CuAAC)ChemistryQD1-999ENFrontiers in Chemistry, Vol 9 (2021)
institution DOAJ
collection DOAJ
language EN
topic genetic code expansion
amber suppression
noncanonical amino acid
bioorthogonal chemistry
click chemistry
copper catalyzed azide–alkyne cycloaddition (CuAAC)
Chemistry
QD1-999
spellingShingle genetic code expansion
amber suppression
noncanonical amino acid
bioorthogonal chemistry
click chemistry
copper catalyzed azide–alkyne cycloaddition (CuAAC)
Chemistry
QD1-999
Birthe Meineke
Birthe Meineke
Johannes Heimgärtner
Johannes Heimgärtner
Alexander J. Craig
Michael Landreh
Lindon W. K. Moodie
Lindon W. K. Moodie
Simon J. Elsässer
Simon J. Elsässer
A Genetically Encoded Picolyl Azide for Improved Live Cell Copper Click Labeling
description Bioorthogonal chemistry allows rapid and highly selective reactivity in biological environments. The copper-catalyzed azide–alkyne cycloaddition (CuAAC) is a classic bioorthogonal reaction routinely used to modify azides or alkynes that have been introduced into biomolecules. Amber suppression is an efficient method for incorporating such chemical handles into proteins on the ribosome, in which noncanonical amino acids (ncAAs) are site specifically introduced into the polypeptide in response to an amber (UAG) stop codon. A variety of ncAA structures containing azides or alkynes have been proven useful for performing CuAAC chemistry on proteins. To improve CuAAC efficiency, biologically incorporated alkyne groups can be reacted with azide substrates that contain copper-chelating groups. However, the direct incorporation of copper-chelating azides into proteins has not been explored. To remedy this, we prepared the ncAA paz-lysine (PazK), which contains a picolyl azide motif. We show that PazK is efficiently incorporated into proteins by amber suppression in mammalian cells. Furthermore, PazK-labeled proteins show improved reactivity with alkyne reagents in CuAAC.
format article
author Birthe Meineke
Birthe Meineke
Johannes Heimgärtner
Johannes Heimgärtner
Alexander J. Craig
Michael Landreh
Lindon W. K. Moodie
Lindon W. K. Moodie
Simon J. Elsässer
Simon J. Elsässer
author_facet Birthe Meineke
Birthe Meineke
Johannes Heimgärtner
Johannes Heimgärtner
Alexander J. Craig
Michael Landreh
Lindon W. K. Moodie
Lindon W. K. Moodie
Simon J. Elsässer
Simon J. Elsässer
author_sort Birthe Meineke
title A Genetically Encoded Picolyl Azide for Improved Live Cell Copper Click Labeling
title_short A Genetically Encoded Picolyl Azide for Improved Live Cell Copper Click Labeling
title_full A Genetically Encoded Picolyl Azide for Improved Live Cell Copper Click Labeling
title_fullStr A Genetically Encoded Picolyl Azide for Improved Live Cell Copper Click Labeling
title_full_unstemmed A Genetically Encoded Picolyl Azide for Improved Live Cell Copper Click Labeling
title_sort genetically encoded picolyl azide for improved live cell copper click labeling
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/80dfbc6fdcfb4fc3aa01db18bc5f6838
work_keys_str_mv AT birthemeineke ageneticallyencodedpicolylazideforimprovedlivecellcopperclicklabeling
AT birthemeineke ageneticallyencodedpicolylazideforimprovedlivecellcopperclicklabeling
AT johannesheimgartner ageneticallyencodedpicolylazideforimprovedlivecellcopperclicklabeling
AT johannesheimgartner ageneticallyencodedpicolylazideforimprovedlivecellcopperclicklabeling
AT alexanderjcraig ageneticallyencodedpicolylazideforimprovedlivecellcopperclicklabeling
AT michaellandreh ageneticallyencodedpicolylazideforimprovedlivecellcopperclicklabeling
AT lindonwkmoodie ageneticallyencodedpicolylazideforimprovedlivecellcopperclicklabeling
AT lindonwkmoodie ageneticallyencodedpicolylazideforimprovedlivecellcopperclicklabeling
AT simonjelsasser ageneticallyencodedpicolylazideforimprovedlivecellcopperclicklabeling
AT simonjelsasser ageneticallyencodedpicolylazideforimprovedlivecellcopperclicklabeling
AT birthemeineke geneticallyencodedpicolylazideforimprovedlivecellcopperclicklabeling
AT birthemeineke geneticallyencodedpicolylazideforimprovedlivecellcopperclicklabeling
AT johannesheimgartner geneticallyencodedpicolylazideforimprovedlivecellcopperclicklabeling
AT johannesheimgartner geneticallyencodedpicolylazideforimprovedlivecellcopperclicklabeling
AT alexanderjcraig geneticallyencodedpicolylazideforimprovedlivecellcopperclicklabeling
AT michaellandreh geneticallyencodedpicolylazideforimprovedlivecellcopperclicklabeling
AT lindonwkmoodie geneticallyencodedpicolylazideforimprovedlivecellcopperclicklabeling
AT lindonwkmoodie geneticallyencodedpicolylazideforimprovedlivecellcopperclicklabeling
AT simonjelsasser geneticallyencodedpicolylazideforimprovedlivecellcopperclicklabeling
AT simonjelsasser geneticallyencodedpicolylazideforimprovedlivecellcopperclicklabeling
_version_ 1718439232742096896