Small RNA modules confer different stabilities and interact differently with multiple targets.

Bacterial Hfq-associated small regulatory RNAs (sRNAs) parallel animal microRNAs in their ability to control multiple target mRNAs. The small non-coding MicA RNA represses the expression of several genes, including major outer membrane proteins such as ompA, tsx and ecnB. In this study, we have char...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: José Marques Andrade, Vânia Pobre, Cecília Maria Arraiano
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/80e36d4ecd94428494b9c3033f3d93f4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:80e36d4ecd94428494b9c3033f3d93f4
record_format dspace
spelling oai:doaj.org-article:80e36d4ecd94428494b9c3033f3d93f42021-11-18T08:00:42ZSmall RNA modules confer different stabilities and interact differently with multiple targets.1932-620310.1371/journal.pone.0052866https://doaj.org/article/80e36d4ecd94428494b9c3033f3d93f42013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23349691/?tool=EBIhttps://doaj.org/toc/1932-6203Bacterial Hfq-associated small regulatory RNAs (sRNAs) parallel animal microRNAs in their ability to control multiple target mRNAs. The small non-coding MicA RNA represses the expression of several genes, including major outer membrane proteins such as ompA, tsx and ecnB. In this study, we have characterised the RNA determinants involved in the stability of MicA and analysed how they influence the expression of its targets. Site-directed mutagenesis was used to construct MicA mutated forms. The 5'linear domain, the structured region with two stem-loops, the A/U-rich sequence or the 3' poly(U) tail were altered without affecting the overall secondary structure of MicA. The stability and the target regulation abilities of the wild-type and the different mutated forms of MicA were then compared. The 5' domain impacted MicA stability through an RNase III-mediated pathway. The two stem-loops showed different roles and disruption of stem-loop 2 was the one that mostly affected MicA stability and abundance. Moreover, STEM2 was found to be more important for the in vivo repression of both ompA and ecnB mRNAs while STEM1 was critical for regulation of tsx mRNA levels. The A/U-rich linear sequence is not the only Hfq-binding site present in MicA and the 3' poly(U) sequence was critical for sRNA stability. PNPase was shown to be an important exoribonuclease involved in sRNA degradation. In addition to the 5' domain of MicA, the stem-loops and the 3' poly(U) tail are also shown to affect target-binding. Disruption of the 3'U-rich sequence greatly affects all targets analysed. In conclusion, our results have shown that it is important to understand the "sRNA anatomy" in order to modulate its stability. Furthermore, we have demonstrated that MicA RNA can use different modules to regulate its targets. This knowledge can allow for the engineering of non-coding RNAs that interact differently with multiple targets.José Marques AndradeVânia PobreCecília Maria ArraianoPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 1, p e52866 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
José Marques Andrade
Vânia Pobre
Cecília Maria Arraiano
Small RNA modules confer different stabilities and interact differently with multiple targets.
description Bacterial Hfq-associated small regulatory RNAs (sRNAs) parallel animal microRNAs in their ability to control multiple target mRNAs. The small non-coding MicA RNA represses the expression of several genes, including major outer membrane proteins such as ompA, tsx and ecnB. In this study, we have characterised the RNA determinants involved in the stability of MicA and analysed how they influence the expression of its targets. Site-directed mutagenesis was used to construct MicA mutated forms. The 5'linear domain, the structured region with two stem-loops, the A/U-rich sequence or the 3' poly(U) tail were altered without affecting the overall secondary structure of MicA. The stability and the target regulation abilities of the wild-type and the different mutated forms of MicA were then compared. The 5' domain impacted MicA stability through an RNase III-mediated pathway. The two stem-loops showed different roles and disruption of stem-loop 2 was the one that mostly affected MicA stability and abundance. Moreover, STEM2 was found to be more important for the in vivo repression of both ompA and ecnB mRNAs while STEM1 was critical for regulation of tsx mRNA levels. The A/U-rich linear sequence is not the only Hfq-binding site present in MicA and the 3' poly(U) sequence was critical for sRNA stability. PNPase was shown to be an important exoribonuclease involved in sRNA degradation. In addition to the 5' domain of MicA, the stem-loops and the 3' poly(U) tail are also shown to affect target-binding. Disruption of the 3'U-rich sequence greatly affects all targets analysed. In conclusion, our results have shown that it is important to understand the "sRNA anatomy" in order to modulate its stability. Furthermore, we have demonstrated that MicA RNA can use different modules to regulate its targets. This knowledge can allow for the engineering of non-coding RNAs that interact differently with multiple targets.
format article
author José Marques Andrade
Vânia Pobre
Cecília Maria Arraiano
author_facet José Marques Andrade
Vânia Pobre
Cecília Maria Arraiano
author_sort José Marques Andrade
title Small RNA modules confer different stabilities and interact differently with multiple targets.
title_short Small RNA modules confer different stabilities and interact differently with multiple targets.
title_full Small RNA modules confer different stabilities and interact differently with multiple targets.
title_fullStr Small RNA modules confer different stabilities and interact differently with multiple targets.
title_full_unstemmed Small RNA modules confer different stabilities and interact differently with multiple targets.
title_sort small rna modules confer different stabilities and interact differently with multiple targets.
publisher Public Library of Science (PLoS)
publishDate 2013
url https://doaj.org/article/80e36d4ecd94428494b9c3033f3d93f4
work_keys_str_mv AT josemarquesandrade smallrnamodulesconferdifferentstabilitiesandinteractdifferentlywithmultipletargets
AT vaniapobre smallrnamodulesconferdifferentstabilitiesandinteractdifferentlywithmultipletargets
AT ceciliamariaarraiano smallrnamodulesconferdifferentstabilitiesandinteractdifferentlywithmultipletargets
_version_ 1718422677414215680