Programmed biomolecule delivery to enable and direct cell migration for connective tissue repair

Dense connective tissues do not easily heal, in part due to a low supply of reparative cells. Here, the authors develop a fibrous scaffold for meniscal repair that sequentially releases collagenase and a growth factor at the injury site, breaking down the extracellular matrix and recruiting endogeno...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Feini Qu, Julianne L. Holloway, John L. Esterhai, Jason A. Burdick, Robert L. Mauck
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/810e049ef0d64a378aa7c4e74e8cdf7e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:810e049ef0d64a378aa7c4e74e8cdf7e
record_format dspace
spelling oai:doaj.org-article:810e049ef0d64a378aa7c4e74e8cdf7e2021-12-02T14:40:37ZProgrammed biomolecule delivery to enable and direct cell migration for connective tissue repair10.1038/s41467-017-01955-w2041-1723https://doaj.org/article/810e049ef0d64a378aa7c4e74e8cdf7e2017-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-01955-whttps://doaj.org/toc/2041-1723Dense connective tissues do not easily heal, in part due to a low supply of reparative cells. Here, the authors develop a fibrous scaffold for meniscal repair that sequentially releases collagenase and a growth factor at the injury site, breaking down the extracellular matrix and recruiting endogenous cells.Feini QuJulianne L. HollowayJohn L. EsterhaiJason A. BurdickRobert L. MauckNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-11 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Feini Qu
Julianne L. Holloway
John L. Esterhai
Jason A. Burdick
Robert L. Mauck
Programmed biomolecule delivery to enable and direct cell migration for connective tissue repair
description Dense connective tissues do not easily heal, in part due to a low supply of reparative cells. Here, the authors develop a fibrous scaffold for meniscal repair that sequentially releases collagenase and a growth factor at the injury site, breaking down the extracellular matrix and recruiting endogenous cells.
format article
author Feini Qu
Julianne L. Holloway
John L. Esterhai
Jason A. Burdick
Robert L. Mauck
author_facet Feini Qu
Julianne L. Holloway
John L. Esterhai
Jason A. Burdick
Robert L. Mauck
author_sort Feini Qu
title Programmed biomolecule delivery to enable and direct cell migration for connective tissue repair
title_short Programmed biomolecule delivery to enable and direct cell migration for connective tissue repair
title_full Programmed biomolecule delivery to enable and direct cell migration for connective tissue repair
title_fullStr Programmed biomolecule delivery to enable and direct cell migration for connective tissue repair
title_full_unstemmed Programmed biomolecule delivery to enable and direct cell migration for connective tissue repair
title_sort programmed biomolecule delivery to enable and direct cell migration for connective tissue repair
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/810e049ef0d64a378aa7c4e74e8cdf7e
work_keys_str_mv AT feiniqu programmedbiomoleculedeliverytoenableanddirectcellmigrationforconnectivetissuerepair
AT juliannelholloway programmedbiomoleculedeliverytoenableanddirectcellmigrationforconnectivetissuerepair
AT johnlesterhai programmedbiomoleculedeliverytoenableanddirectcellmigrationforconnectivetissuerepair
AT jasonaburdick programmedbiomoleculedeliverytoenableanddirectcellmigrationforconnectivetissuerepair
AT robertlmauck programmedbiomoleculedeliverytoenableanddirectcellmigrationforconnectivetissuerepair
_version_ 1718390248425127936