Nanovibrational stimulation inhibits osteoclastogenesis and enhances osteogenesis in co-cultures
Abstract Models of bone remodelling could be useful in drug discovery, particularly if the model is one that replicates bone regeneration with reduction in osteoclast activity. Here we use nanovibrational stimulation to achieve this in a 3D co-culture of primary human osteoprogenitor and osteoclast...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/810f83f7a49e40a688c667b930757c1d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:810f83f7a49e40a688c667b930757c1d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:810f83f7a49e40a688c667b930757c1d2021-11-28T12:21:31ZNanovibrational stimulation inhibits osteoclastogenesis and enhances osteogenesis in co-cultures10.1038/s41598-021-02139-92045-2322https://doaj.org/article/810f83f7a49e40a688c667b930757c1d2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-02139-9https://doaj.org/toc/2045-2322Abstract Models of bone remodelling could be useful in drug discovery, particularly if the model is one that replicates bone regeneration with reduction in osteoclast activity. Here we use nanovibrational stimulation to achieve this in a 3D co-culture of primary human osteoprogenitor and osteoclast progenitor cells. We show that 1000 Hz frequency, 40 nm amplitude vibration reduces osteoclast formation and activity in human mononuclear CD14+ blood cells. Additionally, this nanoscale vibration both enhances osteogenesis and reduces osteoclastogenesis in a co-culture of primary human bone marrow stromal cells and bone marrow hematopoietic cells. Further, we use metabolomics to identify Akt (protein kinase C) as a potential mediator. Akt is known to be involved in bone differentiation via transforming growth factor beta 1 (TGFβ1) and bone morphogenetic protein 2 (BMP2) and it has been implicated in reduced osteoclast activity via Guanine nucleotide-binding protein subunit α13 (Gα13). With further validation, our nanovibrational bioreactor could be used to help provide humanised 3D models for drug screening.John W. KennedyP. Monica TsimbouriPaul CampsieShatakshi SoodPeter G. ChildsStuart ReidPeter S. YoungDominic R. M. MeekCarl S. GoodyearMatthew J. DalbyNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q John W. Kennedy P. Monica Tsimbouri Paul Campsie Shatakshi Sood Peter G. Childs Stuart Reid Peter S. Young Dominic R. M. Meek Carl S. Goodyear Matthew J. Dalby Nanovibrational stimulation inhibits osteoclastogenesis and enhances osteogenesis in co-cultures |
description |
Abstract Models of bone remodelling could be useful in drug discovery, particularly if the model is one that replicates bone regeneration with reduction in osteoclast activity. Here we use nanovibrational stimulation to achieve this in a 3D co-culture of primary human osteoprogenitor and osteoclast progenitor cells. We show that 1000 Hz frequency, 40 nm amplitude vibration reduces osteoclast formation and activity in human mononuclear CD14+ blood cells. Additionally, this nanoscale vibration both enhances osteogenesis and reduces osteoclastogenesis in a co-culture of primary human bone marrow stromal cells and bone marrow hematopoietic cells. Further, we use metabolomics to identify Akt (protein kinase C) as a potential mediator. Akt is known to be involved in bone differentiation via transforming growth factor beta 1 (TGFβ1) and bone morphogenetic protein 2 (BMP2) and it has been implicated in reduced osteoclast activity via Guanine nucleotide-binding protein subunit α13 (Gα13). With further validation, our nanovibrational bioreactor could be used to help provide humanised 3D models for drug screening. |
format |
article |
author |
John W. Kennedy P. Monica Tsimbouri Paul Campsie Shatakshi Sood Peter G. Childs Stuart Reid Peter S. Young Dominic R. M. Meek Carl S. Goodyear Matthew J. Dalby |
author_facet |
John W. Kennedy P. Monica Tsimbouri Paul Campsie Shatakshi Sood Peter G. Childs Stuart Reid Peter S. Young Dominic R. M. Meek Carl S. Goodyear Matthew J. Dalby |
author_sort |
John W. Kennedy |
title |
Nanovibrational stimulation inhibits osteoclastogenesis and enhances osteogenesis in co-cultures |
title_short |
Nanovibrational stimulation inhibits osteoclastogenesis and enhances osteogenesis in co-cultures |
title_full |
Nanovibrational stimulation inhibits osteoclastogenesis and enhances osteogenesis in co-cultures |
title_fullStr |
Nanovibrational stimulation inhibits osteoclastogenesis and enhances osteogenesis in co-cultures |
title_full_unstemmed |
Nanovibrational stimulation inhibits osteoclastogenesis and enhances osteogenesis in co-cultures |
title_sort |
nanovibrational stimulation inhibits osteoclastogenesis and enhances osteogenesis in co-cultures |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/810f83f7a49e40a688c667b930757c1d |
work_keys_str_mv |
AT johnwkennedy nanovibrationalstimulationinhibitsosteoclastogenesisandenhancesosteogenesisincocultures AT pmonicatsimbouri nanovibrationalstimulationinhibitsosteoclastogenesisandenhancesosteogenesisincocultures AT paulcampsie nanovibrationalstimulationinhibitsosteoclastogenesisandenhancesosteogenesisincocultures AT shatakshisood nanovibrationalstimulationinhibitsosteoclastogenesisandenhancesosteogenesisincocultures AT petergchilds nanovibrationalstimulationinhibitsosteoclastogenesisandenhancesosteogenesisincocultures AT stuartreid nanovibrationalstimulationinhibitsosteoclastogenesisandenhancesosteogenesisincocultures AT petersyoung nanovibrationalstimulationinhibitsosteoclastogenesisandenhancesosteogenesisincocultures AT dominicrmmeek nanovibrationalstimulationinhibitsosteoclastogenesisandenhancesosteogenesisincocultures AT carlsgoodyear nanovibrationalstimulationinhibitsosteoclastogenesisandenhancesosteogenesisincocultures AT matthewjdalby nanovibrationalstimulationinhibitsosteoclastogenesisandenhancesosteogenesisincocultures |
_version_ |
1718408026134675456 |