A Contribution to the Modelling of Fouling Resistance in Heat Exchanger-Condenser by Direct and Inverse Artificial Neural Network
The aim of this study was to predict the fouling resistance (FR) using the artificial neural networks (ANN) approach. An experimental database collected from the literature regarding the fouling of condenser tubes cooling seawater of a nuclear power plant was used to build the ANN model. All models...
Guardado en:
Autores principales: | Ahmed Benyekhlef, Brahim Mohammedi, Salah Hanini, Mouloud Boumahdi, Ahmed Rezrazi, Maamar Laidi |
---|---|
Formato: | article |
Lenguaje: | EN HR |
Publicado: |
Croatian Society of Chemical Engineers
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8121aba11fc54025bf176661f36ca459 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Application of artificial neural network (ANN-MLP) for the prediction of fouling resistance in heat exchanger to MgO-water and CuO-water nanofluids
por: Ahmed Benyekhlef, et al.
Publicado: (2021) -
Machine learning for carbon stock prediction in a tropical forest in Southeastern Brazil
por: Dantas,Daniel, et al.
Publicado: (2021) -
Modelos de Algoritmos Genéticos y Redes Neuronales en la Predicción de Índices Bursátiles Asiáticos
por: Parisi,Antonino, et al.
Publicado: (2006) -
Hybrid Forecast and Control Chain for Operation of Flexibility Assets in Micro-Grids
por: Hamidreza Mirtaheri, et al.
Publicado: (2021) -
Deep neural networks for global wildfire susceptibility modelling
por: Guoli Zhang, et al.
Publicado: (2021)