Estimating the COVID-19 prevalence and mortality using a novel data-driven hybrid model based on ensemble empirical mode decomposition
Abstract In this study, we proposed a new data-driven hybrid technique by integrating an ensemble empirical mode decomposition (EEMD), an autoregressive integrated moving average (ARIMA), with a nonlinear autoregressive artificial neural network (NARANN), called the EEMD-ARIMA-NARANN model, to perfo...
Guardado en:
Autores principales: | Yongbin Wang, Chunjie Xu, Sanqiao Yao, Lei Wang, Yingzheng Zhao, Jingchao Ren, Yuchun Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/81246b99e6dd45e79b01533e11f663f3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A novel algorithm based on ensemble empirical mode decomposition for non-invasive fetal ECG extraction.
por: Katerina Barnova, et al.
Publicado: (2021) -
A Compound fault diagnosis for rolling bearings method based on blind source separation and ensemble empirical mode decomposition.
por: Huaqing Wang, et al.
Publicado: (2014) -
Application of multi-layer denoising based on ensemble empirical mode decomposition in extraction of fault feature of rotating machinery.
por: Kangping Gao, et al.
Publicado: (2021) -
Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition
por: Ravichandra Madanu, et al.
Publicado: (2021) -
Application of Empirical Mode Decomposition and Extreme Learning Machine Algorithms on Prediction of the Surface Vibration Signal
por: Yan Shen, et al.
Publicado: (2021)