Estimating the COVID-19 prevalence and mortality using a novel data-driven hybrid model based on ensemble empirical mode decomposition

Abstract In this study, we proposed a new data-driven hybrid technique by integrating an ensemble empirical mode decomposition (EEMD), an autoregressive integrated moving average (ARIMA), with a nonlinear autoregressive artificial neural network (NARANN), called the EEMD-ARIMA-NARANN model, to perfo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yongbin Wang, Chunjie Xu, Sanqiao Yao, Lei Wang, Yingzheng Zhao, Jingchao Ren, Yuchun Li
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/81246b99e6dd45e79b01533e11f663f3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares