Estimating the COVID-19 prevalence and mortality using a novel data-driven hybrid model based on ensemble empirical mode decomposition
Abstract In this study, we proposed a new data-driven hybrid technique by integrating an ensemble empirical mode decomposition (EEMD), an autoregressive integrated moving average (ARIMA), with a nonlinear autoregressive artificial neural network (NARANN), called the EEMD-ARIMA-NARANN model, to perfo...
Enregistré dans:
Auteurs principaux: | Yongbin Wang, Chunjie Xu, Sanqiao Yao, Lei Wang, Yingzheng Zhao, Jingchao Ren, Yuchun Li |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/81246b99e6dd45e79b01533e11f663f3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A novel algorithm based on ensemble empirical mode decomposition for non-invasive fetal ECG extraction.
par: Katerina Barnova, et autres
Publié: (2021) -
A Compound fault diagnosis for rolling bearings method based on blind source separation and ensemble empirical mode decomposition.
par: Huaqing Wang, et autres
Publié: (2014) -
Application of multi-layer denoising based on ensemble empirical mode decomposition in extraction of fault feature of rotating machinery.
par: Kangping Gao, et autres
Publié: (2021) -
Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition
par: Ravichandra Madanu, et autres
Publié: (2021) -
Application of Empirical Mode Decomposition and Extreme Learning Machine Algorithms on Prediction of the Surface Vibration Signal
par: Yan Shen, et autres
Publié: (2021)