The summed start-up costs in a unit commitment problem

We consider the sum of the incurred start-up costs of a single unit in a Unit Commitment problem. Our major result is a correspondence between the facets of its epigraph and some binary trees for concave start-up cost functions CU, which is bijective if CU is strictly concave. We derive an exponenti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: René Brandenberg, Matthias Huber, Matthias Silbernagl
Formato: article
Lenguaje:EN
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://doaj.org/article/81334a3e739a41808fcb7a90146d887d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:81334a3e739a41808fcb7a90146d887d
record_format dspace
spelling oai:doaj.org-article:81334a3e739a41808fcb7a90146d887d2021-12-02T05:01:00ZThe summed start-up costs in a unit commitment problem2192-440610.1007/s13675-016-0062-2https://doaj.org/article/81334a3e739a41808fcb7a90146d887d2017-03-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2192440621000794https://doaj.org/toc/2192-4406We consider the sum of the incurred start-up costs of a single unit in a Unit Commitment problem. Our major result is a correspondence between the facets of its epigraph and some binary trees for concave start-up cost functions CU, which is bijective if CU is strictly concave. We derive an exponential H-representation of this epigraph, and provide an exact linear separation algorithm. These results significantly reduce the integrality gap of the Mixed Integer formulation of a Unit Commitment Problem compared to current literature.René BrandenbergMatthias HuberMatthias SilbernaglElsevierarticle90C5790C1190B9952B12Applied mathematics. Quantitative methodsT57-57.97Electronic computers. Computer scienceQA75.5-76.95ENEURO Journal on Computational Optimization, Vol 5, Iss 1, Pp 203-238 (2017)
institution DOAJ
collection DOAJ
language EN
topic 90C57
90C11
90B99
52B12
Applied mathematics. Quantitative methods
T57-57.97
Electronic computers. Computer science
QA75.5-76.95
spellingShingle 90C57
90C11
90B99
52B12
Applied mathematics. Quantitative methods
T57-57.97
Electronic computers. Computer science
QA75.5-76.95
René Brandenberg
Matthias Huber
Matthias Silbernagl
The summed start-up costs in a unit commitment problem
description We consider the sum of the incurred start-up costs of a single unit in a Unit Commitment problem. Our major result is a correspondence between the facets of its epigraph and some binary trees for concave start-up cost functions CU, which is bijective if CU is strictly concave. We derive an exponential H-representation of this epigraph, and provide an exact linear separation algorithm. These results significantly reduce the integrality gap of the Mixed Integer formulation of a Unit Commitment Problem compared to current literature.
format article
author René Brandenberg
Matthias Huber
Matthias Silbernagl
author_facet René Brandenberg
Matthias Huber
Matthias Silbernagl
author_sort René Brandenberg
title The summed start-up costs in a unit commitment problem
title_short The summed start-up costs in a unit commitment problem
title_full The summed start-up costs in a unit commitment problem
title_fullStr The summed start-up costs in a unit commitment problem
title_full_unstemmed The summed start-up costs in a unit commitment problem
title_sort summed start-up costs in a unit commitment problem
publisher Elsevier
publishDate 2017
url https://doaj.org/article/81334a3e739a41808fcb7a90146d887d
work_keys_str_mv AT renebrandenberg thesummedstartupcostsinaunitcommitmentproblem
AT matthiashuber thesummedstartupcostsinaunitcommitmentproblem
AT matthiassilbernagl thesummedstartupcostsinaunitcommitmentproblem
AT renebrandenberg summedstartupcostsinaunitcommitmentproblem
AT matthiashuber summedstartupcostsinaunitcommitmentproblem
AT matthiassilbernagl summedstartupcostsinaunitcommitmentproblem
_version_ 1718400839459012608