Prediction of thermal boundary resistance by the machine learning method
Abstract Thermal boundary resistance (TBR) is a key property for the thermal management of high power micro- and opto-electronic devices and for the development of high efficiency thermal barrier coatings and thermoelectric materials. Prediction of TBR is important for guiding the discovery of inter...
Guardado en:
Autores principales: | Tianzhuo Zhan, Lei Fang, Yibin Xu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/813706a4ef82407a80522e53468a3391 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting phase behavior of grain boundaries with evolutionary search and machine learning
por: Qiang Zhu, et al.
Publicado: (2018) -
Dialysis adequacy predictions using a machine learning method
por: Hyung Woo Kim, et al.
Publicado: (2021) -
Predicting women with depressive symptoms postpartum with machine learning methods
por: Sam Andersson, et al.
Publicado: (2021) -
A machine learning method for the prediction of receptor activation in the simulation of synapses.
por: Jesus Montes, et al.
Publicado: (2013) -
Machine learning based prediction of lattice thermal conductivity for half-Heusler compounds using atomic information
por: Hidetoshi Miyazaki, et al.
Publicado: (2021)