Fast and precise single-cell data analysis using a hierarchical autoencoder
Accurate analysis of single-cell RNA sequencing (scRNA-seq) data is affected by issues including technical noise and high dropout rate. Here, the authors develop a hierarchical autoencoder, scDHA, which outperforms existing methods in scRNA-seq analyses such as cell segregation and classification.
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/813eb214084a4077901ce27df4df0494 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:813eb214084a4077901ce27df4df0494 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:813eb214084a4077901ce27df4df04942021-12-02T10:54:04ZFast and precise single-cell data analysis using a hierarchical autoencoder10.1038/s41467-021-21312-22041-1723https://doaj.org/article/813eb214084a4077901ce27df4df04942021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21312-2https://doaj.org/toc/2041-1723Accurate analysis of single-cell RNA sequencing (scRNA-seq) data is affected by issues including technical noise and high dropout rate. Here, the authors develop a hierarchical autoencoder, scDHA, which outperforms existing methods in scRNA-seq analyses such as cell segregation and classification.Duc TranHung NguyenBang TranCarlo La VecchiaHung N. LuuTin NguyenNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Duc Tran Hung Nguyen Bang Tran Carlo La Vecchia Hung N. Luu Tin Nguyen Fast and precise single-cell data analysis using a hierarchical autoencoder |
description |
Accurate analysis of single-cell RNA sequencing (scRNA-seq) data is affected by issues including technical noise and high dropout rate. Here, the authors develop a hierarchical autoencoder, scDHA, which outperforms existing methods in scRNA-seq analyses such as cell segregation and classification. |
format |
article |
author |
Duc Tran Hung Nguyen Bang Tran Carlo La Vecchia Hung N. Luu Tin Nguyen |
author_facet |
Duc Tran Hung Nguyen Bang Tran Carlo La Vecchia Hung N. Luu Tin Nguyen |
author_sort |
Duc Tran |
title |
Fast and precise single-cell data analysis using a hierarchical autoencoder |
title_short |
Fast and precise single-cell data analysis using a hierarchical autoencoder |
title_full |
Fast and precise single-cell data analysis using a hierarchical autoencoder |
title_fullStr |
Fast and precise single-cell data analysis using a hierarchical autoencoder |
title_full_unstemmed |
Fast and precise single-cell data analysis using a hierarchical autoencoder |
title_sort |
fast and precise single-cell data analysis using a hierarchical autoencoder |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/813eb214084a4077901ce27df4df0494 |
work_keys_str_mv |
AT ductran fastandprecisesinglecelldataanalysisusingahierarchicalautoencoder AT hungnguyen fastandprecisesinglecelldataanalysisusingahierarchicalautoencoder AT bangtran fastandprecisesinglecelldataanalysisusingahierarchicalautoencoder AT carlolavecchia fastandprecisesinglecelldataanalysisusingahierarchicalautoencoder AT hungnluu fastandprecisesinglecelldataanalysisusingahierarchicalautoencoder AT tinnguyen fastandprecisesinglecelldataanalysisusingahierarchicalautoencoder |
_version_ |
1718396478316085248 |