Fast and precise single-cell data analysis using a hierarchical autoencoder

Accurate analysis of single-cell RNA sequencing (scRNA-seq) data is affected by issues including technical noise and high dropout rate. Here, the authors develop a hierarchical autoencoder, scDHA, which outperforms existing methods in scRNA-seq analyses such as cell segregation and classification.

Guardado en:
Detalles Bibliográficos
Autores principales: Duc Tran, Hung Nguyen, Bang Tran, Carlo La Vecchia, Hung N. Luu, Tin Nguyen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/813eb214084a4077901ce27df4df0494
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:813eb214084a4077901ce27df4df0494
record_format dspace
spelling oai:doaj.org-article:813eb214084a4077901ce27df4df04942021-12-02T10:54:04ZFast and precise single-cell data analysis using a hierarchical autoencoder10.1038/s41467-021-21312-22041-1723https://doaj.org/article/813eb214084a4077901ce27df4df04942021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21312-2https://doaj.org/toc/2041-1723Accurate analysis of single-cell RNA sequencing (scRNA-seq) data is affected by issues including technical noise and high dropout rate. Here, the authors develop a hierarchical autoencoder, scDHA, which outperforms existing methods in scRNA-seq analyses such as cell segregation and classification.Duc TranHung NguyenBang TranCarlo La VecchiaHung N. LuuTin NguyenNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Duc Tran
Hung Nguyen
Bang Tran
Carlo La Vecchia
Hung N. Luu
Tin Nguyen
Fast and precise single-cell data analysis using a hierarchical autoencoder
description Accurate analysis of single-cell RNA sequencing (scRNA-seq) data is affected by issues including technical noise and high dropout rate. Here, the authors develop a hierarchical autoencoder, scDHA, which outperforms existing methods in scRNA-seq analyses such as cell segregation and classification.
format article
author Duc Tran
Hung Nguyen
Bang Tran
Carlo La Vecchia
Hung N. Luu
Tin Nguyen
author_facet Duc Tran
Hung Nguyen
Bang Tran
Carlo La Vecchia
Hung N. Luu
Tin Nguyen
author_sort Duc Tran
title Fast and precise single-cell data analysis using a hierarchical autoencoder
title_short Fast and precise single-cell data analysis using a hierarchical autoencoder
title_full Fast and precise single-cell data analysis using a hierarchical autoencoder
title_fullStr Fast and precise single-cell data analysis using a hierarchical autoencoder
title_full_unstemmed Fast and precise single-cell data analysis using a hierarchical autoencoder
title_sort fast and precise single-cell data analysis using a hierarchical autoencoder
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/813eb214084a4077901ce27df4df0494
work_keys_str_mv AT ductran fastandprecisesinglecelldataanalysisusingahierarchicalautoencoder
AT hungnguyen fastandprecisesinglecelldataanalysisusingahierarchicalautoencoder
AT bangtran fastandprecisesinglecelldataanalysisusingahierarchicalautoencoder
AT carlolavecchia fastandprecisesinglecelldataanalysisusingahierarchicalautoencoder
AT hungnluu fastandprecisesinglecelldataanalysisusingahierarchicalautoencoder
AT tinnguyen fastandprecisesinglecelldataanalysisusingahierarchicalautoencoder
_version_ 1718396478316085248