Fast and precise single-cell data analysis using a hierarchical autoencoder
Accurate analysis of single-cell RNA sequencing (scRNA-seq) data is affected by issues including technical noise and high dropout rate. Here, the authors develop a hierarchical autoencoder, scDHA, which outperforms existing methods in scRNA-seq analyses such as cell segregation and classification.
Guardado en:
Autores principales: | Duc Tran, Hung Nguyen, Bang Tran, Carlo La Vecchia, Hung N. Luu, Tin Nguyen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/813eb214084a4077901ce27df4df0494 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multi-domain translation between single-cell imaging and sequencing data using autoencoders
por: Karren Dai Yang, et al.
Publicado: (2021) -
Mixture-of-Experts Variational Autoencoder for clustering and generating from similarity-based representations on single cell data.
por: Andreas Kopf, et al.
Publicado: (2021) -
A topology-preserving dimensionality reduction method for single-cell RNA-seq data using graph autoencoder
por: Zixiang Luo, et al.
Publicado: (2021) -
Hierarchical progressive learning of cell identities in single-cell data
por: Lieke Michielsen, et al.
Publicado: (2021) -
A Research on The Formability of PVC Sheet in Single Point Incremental Forming (SPIF) Technology
por: Thanh Nam Nguyen, et al.
Publicado: (2021)