Comparison of handcrafted features and convolutional neural networks for liver MR image adequacy assessment

Abstract We propose a random forest classifier for identifying adequacy of liver MR images using handcrafted (HC) features and deep convolutional neural networks (CNNs), and analyze the relative role of these two components in relation to the training sample size. The HC features, specifically devel...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wenyi Lin, Kyle Hasenstab, Guilherme Moura Cunha, Armin Schwartzman
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8163ba569a264ccba16c94fb8f0d2882
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares