Comparison of handcrafted features and convolutional neural networks for liver MR image adequacy assessment
Abstract We propose a random forest classifier for identifying adequacy of liver MR images using handcrafted (HC) features and deep convolutional neural networks (CNNs), and analyze the relative role of these two components in relation to the training sample size. The HC features, specifically devel...
Guardado en:
Autores principales: | Wenyi Lin, Kyle Hasenstab, Guilherme Moura Cunha, Armin Schwartzman |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8163ba569a264ccba16c94fb8f0d2882 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Epileptic Seizures Detection in EEG Signals Using Fusion Handcrafted and Deep Learning Features
por: Anis Malekzadeh, et al.
Publicado: (2021) -
Representation of features as images with neighborhood dependencies for compatibility with convolutional neural networks
por: Omid Bazgir, et al.
Publicado: (2020) -
A structured index describing the ease of disassembly for handcrafted product
por: Daniela Francia, et al.
Publicado: (2019) -
HANDCRAFTS MADE BY DISABLED PEOPLE OF THE INVESTIGATION AND THE PERCEPTION OF SATISFACTION RELATED TO THESE WORKS
por: Ayşegül KARAKELLE, et al.
Publicado: (2019) -
Robust feature space separation for deep convolutional neural network training
por: Ali Sekmen, et al.
Publicado: (2021)