Enhanced X-ray emission arising from laser-plasma confinement by a strong transverse magnetic field

Abstract We analyze, using experiments and 3D MHD numerical simulations, the dynamic and radiative properties of a plasma ablated by a laser (1 ns, 10 $$^{12}$$ 12 –10 $$^{13}$$ 13 W/cm $$^2$$ 2 ) from a solid target as it expands into a homogeneous, strong magnetic field (up to 30 T) that is transv...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Evgeny D. Filippov, Sergey S. Makarov, Konstantin F. Burdonov, Weipeng Yao, Guilhem Revet, Jerome Béard, Simon Bolaños, Sophia N. Chen, Amira Guediche, Jack Hare, Denis Romanovsky, Igor Yu. Skobelev, Mikhail Starodubtsev, Andrea Ciardi, Sergey A. Pikuz, Julien Fuchs
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8171b5f577a541758dfc91a189165874
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8171b5f577a541758dfc91a189165874
record_format dspace
spelling oai:doaj.org-article:8171b5f577a541758dfc91a1891658742021-12-02T15:51:13ZEnhanced X-ray emission arising from laser-plasma confinement by a strong transverse magnetic field10.1038/s41598-021-87651-82045-2322https://doaj.org/article/8171b5f577a541758dfc91a1891658742021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-87651-8https://doaj.org/toc/2045-2322Abstract We analyze, using experiments and 3D MHD numerical simulations, the dynamic and radiative properties of a plasma ablated by a laser (1 ns, 10 $$^{12}$$ 12 –10 $$^{13}$$ 13 W/cm $$^2$$ 2 ) from a solid target as it expands into a homogeneous, strong magnetic field (up to 30 T) that is transverse to its main expansion axis. We find that as early as 2 ns after the start of the expansion, the plasma becomes constrained by the magnetic field. As the magnetic field strength is increased, more plasma is confined close to the target and is heated by magnetic compression. We also observe that after $$\sim 8$$ ∼ 8  ns, the plasma is being overall shaped in a slab, with the plasma being compressed perpendicularly to the magnetic field, and being extended along the magnetic field direction. This dense slab rapidly expands into vacuum; however, it contains only $$\sim 2\%$$ ∼ 2 % of the total plasma. As a result of the higher density and increased heating of the plasma confined against the laser-irradiated solid target, there is a net enhancement of the total X-ray emissivity induced by the magnetization.Evgeny D. FilippovSergey S. MakarovKonstantin F. BurdonovWeipeng YaoGuilhem RevetJerome BéardSimon BolañosSophia N. ChenAmira GuedicheJack HareDenis RomanovskyIgor Yu. SkobelevMikhail StarodubtsevAndrea CiardiSergey A. PikuzJulien FuchsNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Evgeny D. Filippov
Sergey S. Makarov
Konstantin F. Burdonov
Weipeng Yao
Guilhem Revet
Jerome Béard
Simon Bolaños
Sophia N. Chen
Amira Guediche
Jack Hare
Denis Romanovsky
Igor Yu. Skobelev
Mikhail Starodubtsev
Andrea Ciardi
Sergey A. Pikuz
Julien Fuchs
Enhanced X-ray emission arising from laser-plasma confinement by a strong transverse magnetic field
description Abstract We analyze, using experiments and 3D MHD numerical simulations, the dynamic and radiative properties of a plasma ablated by a laser (1 ns, 10 $$^{12}$$ 12 –10 $$^{13}$$ 13 W/cm $$^2$$ 2 ) from a solid target as it expands into a homogeneous, strong magnetic field (up to 30 T) that is transverse to its main expansion axis. We find that as early as 2 ns after the start of the expansion, the plasma becomes constrained by the magnetic field. As the magnetic field strength is increased, more plasma is confined close to the target and is heated by magnetic compression. We also observe that after $$\sim 8$$ ∼ 8  ns, the plasma is being overall shaped in a slab, with the plasma being compressed perpendicularly to the magnetic field, and being extended along the magnetic field direction. This dense slab rapidly expands into vacuum; however, it contains only $$\sim 2\%$$ ∼ 2 % of the total plasma. As a result of the higher density and increased heating of the plasma confined against the laser-irradiated solid target, there is a net enhancement of the total X-ray emissivity induced by the magnetization.
format article
author Evgeny D. Filippov
Sergey S. Makarov
Konstantin F. Burdonov
Weipeng Yao
Guilhem Revet
Jerome Béard
Simon Bolaños
Sophia N. Chen
Amira Guediche
Jack Hare
Denis Romanovsky
Igor Yu. Skobelev
Mikhail Starodubtsev
Andrea Ciardi
Sergey A. Pikuz
Julien Fuchs
author_facet Evgeny D. Filippov
Sergey S. Makarov
Konstantin F. Burdonov
Weipeng Yao
Guilhem Revet
Jerome Béard
Simon Bolaños
Sophia N. Chen
Amira Guediche
Jack Hare
Denis Romanovsky
Igor Yu. Skobelev
Mikhail Starodubtsev
Andrea Ciardi
Sergey A. Pikuz
Julien Fuchs
author_sort Evgeny D. Filippov
title Enhanced X-ray emission arising from laser-plasma confinement by a strong transverse magnetic field
title_short Enhanced X-ray emission arising from laser-plasma confinement by a strong transverse magnetic field
title_full Enhanced X-ray emission arising from laser-plasma confinement by a strong transverse magnetic field
title_fullStr Enhanced X-ray emission arising from laser-plasma confinement by a strong transverse magnetic field
title_full_unstemmed Enhanced X-ray emission arising from laser-plasma confinement by a strong transverse magnetic field
title_sort enhanced x-ray emission arising from laser-plasma confinement by a strong transverse magnetic field
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/8171b5f577a541758dfc91a189165874
work_keys_str_mv AT evgenydfilippov enhancedxrayemissionarisingfromlaserplasmaconfinementbyastrongtransversemagneticfield
AT sergeysmakarov enhancedxrayemissionarisingfromlaserplasmaconfinementbyastrongtransversemagneticfield
AT konstantinfburdonov enhancedxrayemissionarisingfromlaserplasmaconfinementbyastrongtransversemagneticfield
AT weipengyao enhancedxrayemissionarisingfromlaserplasmaconfinementbyastrongtransversemagneticfield
AT guilhemrevet enhancedxrayemissionarisingfromlaserplasmaconfinementbyastrongtransversemagneticfield
AT jeromebeard enhancedxrayemissionarisingfromlaserplasmaconfinementbyastrongtransversemagneticfield
AT simonbolanos enhancedxrayemissionarisingfromlaserplasmaconfinementbyastrongtransversemagneticfield
AT sophianchen enhancedxrayemissionarisingfromlaserplasmaconfinementbyastrongtransversemagneticfield
AT amiraguediche enhancedxrayemissionarisingfromlaserplasmaconfinementbyastrongtransversemagneticfield
AT jackhare enhancedxrayemissionarisingfromlaserplasmaconfinementbyastrongtransversemagneticfield
AT denisromanovsky enhancedxrayemissionarisingfromlaserplasmaconfinementbyastrongtransversemagneticfield
AT igoryuskobelev enhancedxrayemissionarisingfromlaserplasmaconfinementbyastrongtransversemagneticfield
AT mikhailstarodubtsev enhancedxrayemissionarisingfromlaserplasmaconfinementbyastrongtransversemagneticfield
AT andreaciardi enhancedxrayemissionarisingfromlaserplasmaconfinementbyastrongtransversemagneticfield
AT sergeyapikuz enhancedxrayemissionarisingfromlaserplasmaconfinementbyastrongtransversemagneticfield
AT julienfuchs enhancedxrayemissionarisingfromlaserplasmaconfinementbyastrongtransversemagneticfield
_version_ 1718385643995791360