Mad1's ability to interact with Mad2 is essential to regulate and monitor meiotic synapsis in C. elegans.

Meiotic homolog synapsis is essential to ensure accurate segregation of chromosomes during meiosis. In C. elegans, proper regulation of synapsis and a checkpoint that monitors synapsis relies on the spindle checkpoint components, Mad1 and Mad2, and Pairing Centers (PCs), cis-acting loci that interac...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alice Devigne, Needhi Bhalla
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
Acceso en línea:https://doaj.org/article/8172bf6758db40e384b043d3d26addb4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8172bf6758db40e384b043d3d26addb4
record_format dspace
spelling oai:doaj.org-article:8172bf6758db40e384b043d3d26addb42021-12-02T20:03:26ZMad1's ability to interact with Mad2 is essential to regulate and monitor meiotic synapsis in C. elegans.1553-73901553-740410.1371/journal.pgen.1009598https://doaj.org/article/8172bf6758db40e384b043d3d26addb42021-11-01T00:00:00Zhttps://doi.org/10.1371/journal.pgen.1009598https://doaj.org/toc/1553-7390https://doaj.org/toc/1553-7404Meiotic homolog synapsis is essential to ensure accurate segregation of chromosomes during meiosis. In C. elegans, proper regulation of synapsis and a checkpoint that monitors synapsis relies on the spindle checkpoint components, Mad1 and Mad2, and Pairing Centers (PCs), cis-acting loci that interact with the nuclear envelope to mobilize chromosomes within the nucleus. Here, we test what specific functions of Mad1 and Mad2 are required to regulate and monitor synapsis. We find that a mutation that prevents Mad1's localization to the nuclear periphery abolishes the synapsis checkpoint but has no effect on Mad2's localization to the nuclear periphery or synapsis. By contrast, a mutation that prevents Mad1's interaction with Mad2 abolishes the synapsis checkpoint, delays synapsis and fails to localize Mad2 to the nuclear periphery. These data indicate that Mad1's primary role in regulating synapsis is through control of Mad2 and that Mad2 can bind other factors at the nuclear periphery. We also tested whether Mad2's ability to adopt a specific conformation associated with its activity during spindle checkpoint function is required for its role in meiosis. A mutation that prevents Mad2 from adopting its active conformer fails to localize to the nuclear periphery, abolishes the synapsis checkpoint and exhibits substantial defects in meiotic synapsis. Thus, Mad2, and its regulation by Mad1, is an important regulator of meiotic synapsis in C. elegans.Alice DevigneNeedhi BhallaPublic Library of Science (PLoS)articleGeneticsQH426-470ENPLoS Genetics, Vol 17, Iss 11, p e1009598 (2021)
institution DOAJ
collection DOAJ
language EN
topic Genetics
QH426-470
spellingShingle Genetics
QH426-470
Alice Devigne
Needhi Bhalla
Mad1's ability to interact with Mad2 is essential to regulate and monitor meiotic synapsis in C. elegans.
description Meiotic homolog synapsis is essential to ensure accurate segregation of chromosomes during meiosis. In C. elegans, proper regulation of synapsis and a checkpoint that monitors synapsis relies on the spindle checkpoint components, Mad1 and Mad2, and Pairing Centers (PCs), cis-acting loci that interact with the nuclear envelope to mobilize chromosomes within the nucleus. Here, we test what specific functions of Mad1 and Mad2 are required to regulate and monitor synapsis. We find that a mutation that prevents Mad1's localization to the nuclear periphery abolishes the synapsis checkpoint but has no effect on Mad2's localization to the nuclear periphery or synapsis. By contrast, a mutation that prevents Mad1's interaction with Mad2 abolishes the synapsis checkpoint, delays synapsis and fails to localize Mad2 to the nuclear periphery. These data indicate that Mad1's primary role in regulating synapsis is through control of Mad2 and that Mad2 can bind other factors at the nuclear periphery. We also tested whether Mad2's ability to adopt a specific conformation associated with its activity during spindle checkpoint function is required for its role in meiosis. A mutation that prevents Mad2 from adopting its active conformer fails to localize to the nuclear periphery, abolishes the synapsis checkpoint and exhibits substantial defects in meiotic synapsis. Thus, Mad2, and its regulation by Mad1, is an important regulator of meiotic synapsis in C. elegans.
format article
author Alice Devigne
Needhi Bhalla
author_facet Alice Devigne
Needhi Bhalla
author_sort Alice Devigne
title Mad1's ability to interact with Mad2 is essential to regulate and monitor meiotic synapsis in C. elegans.
title_short Mad1's ability to interact with Mad2 is essential to regulate and monitor meiotic synapsis in C. elegans.
title_full Mad1's ability to interact with Mad2 is essential to regulate and monitor meiotic synapsis in C. elegans.
title_fullStr Mad1's ability to interact with Mad2 is essential to regulate and monitor meiotic synapsis in C. elegans.
title_full_unstemmed Mad1's ability to interact with Mad2 is essential to regulate and monitor meiotic synapsis in C. elegans.
title_sort mad1's ability to interact with mad2 is essential to regulate and monitor meiotic synapsis in c. elegans.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/8172bf6758db40e384b043d3d26addb4
work_keys_str_mv AT alicedevigne mad1sabilitytointeractwithmad2isessentialtoregulateandmonitormeioticsynapsisincelegans
AT needhibhalla mad1sabilitytointeractwithmad2isessentialtoregulateandmonitormeioticsynapsisincelegans
_version_ 1718375669863284736