Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae).
The importance of honey bees to the world economy far surpasses their contribution in terms of honey production; they are responsible for up to 30% of the world's food production through pollination of crops. Since fall 2006, honey bees in the U.S. have faced a serious population decline, due i...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/817c8ec7efb8469f9ca3777d26696d8e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:817c8ec7efb8469f9ca3777d26696d8e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:817c8ec7efb8469f9ca3777d26696d8e2021-11-18T06:03:43ZLarge-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae).1553-73661553-737410.1371/journal.ppat.1001160https://doaj.org/article/817c8ec7efb8469f9ca3777d26696d8e2010-12-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21203478/pdf/?tool=EBIhttps://doaj.org/toc/1553-7366https://doaj.org/toc/1553-7374The importance of honey bees to the world economy far surpasses their contribution in terms of honey production; they are responsible for up to 30% of the world's food production through pollination of crops. Since fall 2006, honey bees in the U.S. have faced a serious population decline, due in part to a phenomenon called Colony Collapse Disorder (CCD), which is a disease syndrome that is likely caused by several factors. Data from an initial study in which investigators compared pathogens in honey bees affected by CCD suggested a putative role for Israeli Acute Paralysis Virus, IAPV. This is a single stranded RNA virus with no DNA stage placed taxonomically within the family Dicistroviridae. Although subsequent studies have failed to find IAPV in all CCD diagnosed colonies, IAPV has been shown to cause honey bee mortality. RNA interference technology (RNAi) has been used successfully to silence endogenous insect (including honey bee) genes both by injection and feeding. Moreover, RNAi was shown to prevent bees from succumbing to infection from IAPV under laboratory conditions. In the current study IAPV specific homologous dsRNA was used in the field, under natural beekeeping conditions in order to prevent mortality and improve the overall health of bees infected with IAPV. This controlled study included a total of 160 honey bee hives in two discrete climates, seasons and geographical locations (Florida and Pennsylvania). To our knowledge, this is the first successful large-scale real world use of RNAi for disease control.Wayne HunterJames EllisDennis VanengelsdorpJerry HayesDave WesterveltEitan GlickMichael WilliamsIlan SelaEyal MaoriJeffery PettisDiana Cox-FosterNitzan PaldiPublic Library of Science (PLoS)articleImmunologic diseases. AllergyRC581-607Biology (General)QH301-705.5ENPLoS Pathogens, Vol 6, Iss 12, p e1001160 (2010) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Immunologic diseases. Allergy RC581-607 Biology (General) QH301-705.5 |
spellingShingle |
Immunologic diseases. Allergy RC581-607 Biology (General) QH301-705.5 Wayne Hunter James Ellis Dennis Vanengelsdorp Jerry Hayes Dave Westervelt Eitan Glick Michael Williams Ilan Sela Eyal Maori Jeffery Pettis Diana Cox-Foster Nitzan Paldi Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). |
description |
The importance of honey bees to the world economy far surpasses their contribution in terms of honey production; they are responsible for up to 30% of the world's food production through pollination of crops. Since fall 2006, honey bees in the U.S. have faced a serious population decline, due in part to a phenomenon called Colony Collapse Disorder (CCD), which is a disease syndrome that is likely caused by several factors. Data from an initial study in which investigators compared pathogens in honey bees affected by CCD suggested a putative role for Israeli Acute Paralysis Virus, IAPV. This is a single stranded RNA virus with no DNA stage placed taxonomically within the family Dicistroviridae. Although subsequent studies have failed to find IAPV in all CCD diagnosed colonies, IAPV has been shown to cause honey bee mortality. RNA interference technology (RNAi) has been used successfully to silence endogenous insect (including honey bee) genes both by injection and feeding. Moreover, RNAi was shown to prevent bees from succumbing to infection from IAPV under laboratory conditions. In the current study IAPV specific homologous dsRNA was used in the field, under natural beekeeping conditions in order to prevent mortality and improve the overall health of bees infected with IAPV. This controlled study included a total of 160 honey bee hives in two discrete climates, seasons and geographical locations (Florida and Pennsylvania). To our knowledge, this is the first successful large-scale real world use of RNAi for disease control. |
format |
article |
author |
Wayne Hunter James Ellis Dennis Vanengelsdorp Jerry Hayes Dave Westervelt Eitan Glick Michael Williams Ilan Sela Eyal Maori Jeffery Pettis Diana Cox-Foster Nitzan Paldi |
author_facet |
Wayne Hunter James Ellis Dennis Vanengelsdorp Jerry Hayes Dave Westervelt Eitan Glick Michael Williams Ilan Sela Eyal Maori Jeffery Pettis Diana Cox-Foster Nitzan Paldi |
author_sort |
Wayne Hunter |
title |
Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). |
title_short |
Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). |
title_full |
Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). |
title_fullStr |
Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). |
title_full_unstemmed |
Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). |
title_sort |
large-scale field application of rnai technology reducing israeli acute paralysis virus disease in honey bees (apis mellifera, hymenoptera: apidae). |
publisher |
Public Library of Science (PLoS) |
publishDate |
2010 |
url |
https://doaj.org/article/817c8ec7efb8469f9ca3777d26696d8e |
work_keys_str_mv |
AT waynehunter largescalefieldapplicationofrnaitechnologyreducingisraeliacuteparalysisvirusdiseaseinhoneybeesapismelliferahymenopteraapidae AT jamesellis largescalefieldapplicationofrnaitechnologyreducingisraeliacuteparalysisvirusdiseaseinhoneybeesapismelliferahymenopteraapidae AT dennisvanengelsdorp largescalefieldapplicationofrnaitechnologyreducingisraeliacuteparalysisvirusdiseaseinhoneybeesapismelliferahymenopteraapidae AT jerryhayes largescalefieldapplicationofrnaitechnologyreducingisraeliacuteparalysisvirusdiseaseinhoneybeesapismelliferahymenopteraapidae AT davewestervelt largescalefieldapplicationofrnaitechnologyreducingisraeliacuteparalysisvirusdiseaseinhoneybeesapismelliferahymenopteraapidae AT eitanglick largescalefieldapplicationofrnaitechnologyreducingisraeliacuteparalysisvirusdiseaseinhoneybeesapismelliferahymenopteraapidae AT michaelwilliams largescalefieldapplicationofrnaitechnologyreducingisraeliacuteparalysisvirusdiseaseinhoneybeesapismelliferahymenopteraapidae AT ilansela largescalefieldapplicationofrnaitechnologyreducingisraeliacuteparalysisvirusdiseaseinhoneybeesapismelliferahymenopteraapidae AT eyalmaori largescalefieldapplicationofrnaitechnologyreducingisraeliacuteparalysisvirusdiseaseinhoneybeesapismelliferahymenopteraapidae AT jefferypettis largescalefieldapplicationofrnaitechnologyreducingisraeliacuteparalysisvirusdiseaseinhoneybeesapismelliferahymenopteraapidae AT dianacoxfoster largescalefieldapplicationofrnaitechnologyreducingisraeliacuteparalysisvirusdiseaseinhoneybeesapismelliferahymenopteraapidae AT nitzanpaldi largescalefieldapplicationofrnaitechnologyreducingisraeliacuteparalysisvirusdiseaseinhoneybeesapismelliferahymenopteraapidae |
_version_ |
1718424677390483456 |