Digitally Barcoding <italic toggle="yes">Mycobacterium tuberculosis</italic> Reveals <italic toggle="yes">In Vivo</italic> Infection Dynamics in the Macaque Model of Tuberculosis

ABSTRACT Infection with Mycobacterium tuberculosis causes a spectrum of outcomes; the majority of individuals contain but do not eliminate the infection, while a small subset present with primary active tuberculosis (TB) disease. This variability in infection outcomes is recapitulated at the granulo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Constance J. Martin, Anthony M. Cadena, Vivian W. Leung, Philana Ling Lin, Pauline Maiello, Nathan Hicks, Michael R. Chase, JoAnne L. Flynn, Sarah M. Fortune
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://doaj.org/article/8187d85092c146618335b5e01ea34db7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8187d85092c146618335b5e01ea34db7
record_format dspace
spelling oai:doaj.org-article:8187d85092c146618335b5e01ea34db72021-11-15T15:51:29ZDigitally Barcoding <italic toggle="yes">Mycobacterium tuberculosis</italic> Reveals <italic toggle="yes">In Vivo</italic> Infection Dynamics in the Macaque Model of Tuberculosis10.1128/mBio.00312-172150-7511https://doaj.org/article/8187d85092c146618335b5e01ea34db72017-07-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00312-17https://doaj.org/toc/2150-7511ABSTRACT Infection with Mycobacterium tuberculosis causes a spectrum of outcomes; the majority of individuals contain but do not eliminate the infection, while a small subset present with primary active tuberculosis (TB) disease. This variability in infection outcomes is recapitulated at the granuloma level within each host, such that some sites of infection can be fully cleared while others progress. Understanding the spectrum of TB outcomes requires new tools to deconstruct the mechanisms underlying differences in granuloma fate. Here, we use novel genome-encoded barcodes to uniquely tag individual M. tuberculosis bacilli, enabling us to quantitatively track the trajectory of each infecting bacterium in a macaque model of TB. We also introduce a robust bioinformatics pipeline capable of identifying and counting barcode sequences within complex mixtures and at various read depths. By coupling this tagging strategy with serial positron emission tomography coregistered with computed tomography (PET/CT) imaging of lung pathology in macaques, we define a lesional map of M. tuberculosis infection dynamics. We find that there is no significant infection bottleneck, but there are significant constraints on productive bacterial trafficking out of primary granulomas. Our findings validate our barcoding approach and demonstrate its utility in probing lesion-specific biology and dissemination. This novel technology has the potential to greatly enhance our understanding of local dynamics in tuberculosis. IMPORTANCE Classically, M. tuberculosis infection was thought to result in either latent infection or active disease. More recently, the field has recognized that there is a spectrum of M. tuberculosis infection clinical outcomes. Within a single host, this spectrum is recapitulated at the granuloma level, where there can simultaneously be lesional sterilization and poorly contained disease. To better understand the lesional biology of TB infection, we digitally barcoded M. tuberculosis to quantitatively track the fate of each infecting bacterium. By combining this technology with serial PET-CT imaging, we can dynamically track both bacterial populations and granuloma trajectories. We demonstrate that there is little constraint on the bacterial population at the time of infection. However, the granuloma imposes a strong bottleneck on dissemination, and the subset of granulomas at risk of dissemination can be distinguished by physical features.Constance J. MartinAnthony M. CadenaVivian W. LeungPhilana Ling LinPauline MaielloNathan HicksMichael R. ChaseJoAnne L. FlynnSarah M. FortuneAmerican Society for MicrobiologyarticleMycobacterium tuberculosisbacterial barcodegranulomainfection mappinglung infectionmacaqueMicrobiologyQR1-502ENmBio, Vol 8, Iss 3 (2017)
institution DOAJ
collection DOAJ
language EN
topic Mycobacterium tuberculosis
bacterial barcode
granuloma
infection mapping
lung infection
macaque
Microbiology
QR1-502
spellingShingle Mycobacterium tuberculosis
bacterial barcode
granuloma
infection mapping
lung infection
macaque
Microbiology
QR1-502
Constance J. Martin
Anthony M. Cadena
Vivian W. Leung
Philana Ling Lin
Pauline Maiello
Nathan Hicks
Michael R. Chase
JoAnne L. Flynn
Sarah M. Fortune
Digitally Barcoding <italic toggle="yes">Mycobacterium tuberculosis</italic> Reveals <italic toggle="yes">In Vivo</italic> Infection Dynamics in the Macaque Model of Tuberculosis
description ABSTRACT Infection with Mycobacterium tuberculosis causes a spectrum of outcomes; the majority of individuals contain but do not eliminate the infection, while a small subset present with primary active tuberculosis (TB) disease. This variability in infection outcomes is recapitulated at the granuloma level within each host, such that some sites of infection can be fully cleared while others progress. Understanding the spectrum of TB outcomes requires new tools to deconstruct the mechanisms underlying differences in granuloma fate. Here, we use novel genome-encoded barcodes to uniquely tag individual M. tuberculosis bacilli, enabling us to quantitatively track the trajectory of each infecting bacterium in a macaque model of TB. We also introduce a robust bioinformatics pipeline capable of identifying and counting barcode sequences within complex mixtures and at various read depths. By coupling this tagging strategy with serial positron emission tomography coregistered with computed tomography (PET/CT) imaging of lung pathology in macaques, we define a lesional map of M. tuberculosis infection dynamics. We find that there is no significant infection bottleneck, but there are significant constraints on productive bacterial trafficking out of primary granulomas. Our findings validate our barcoding approach and demonstrate its utility in probing lesion-specific biology and dissemination. This novel technology has the potential to greatly enhance our understanding of local dynamics in tuberculosis. IMPORTANCE Classically, M. tuberculosis infection was thought to result in either latent infection or active disease. More recently, the field has recognized that there is a spectrum of M. tuberculosis infection clinical outcomes. Within a single host, this spectrum is recapitulated at the granuloma level, where there can simultaneously be lesional sterilization and poorly contained disease. To better understand the lesional biology of TB infection, we digitally barcoded M. tuberculosis to quantitatively track the fate of each infecting bacterium. By combining this technology with serial PET-CT imaging, we can dynamically track both bacterial populations and granuloma trajectories. We demonstrate that there is little constraint on the bacterial population at the time of infection. However, the granuloma imposes a strong bottleneck on dissemination, and the subset of granulomas at risk of dissemination can be distinguished by physical features.
format article
author Constance J. Martin
Anthony M. Cadena
Vivian W. Leung
Philana Ling Lin
Pauline Maiello
Nathan Hicks
Michael R. Chase
JoAnne L. Flynn
Sarah M. Fortune
author_facet Constance J. Martin
Anthony M. Cadena
Vivian W. Leung
Philana Ling Lin
Pauline Maiello
Nathan Hicks
Michael R. Chase
JoAnne L. Flynn
Sarah M. Fortune
author_sort Constance J. Martin
title Digitally Barcoding <italic toggle="yes">Mycobacterium tuberculosis</italic> Reveals <italic toggle="yes">In Vivo</italic> Infection Dynamics in the Macaque Model of Tuberculosis
title_short Digitally Barcoding <italic toggle="yes">Mycobacterium tuberculosis</italic> Reveals <italic toggle="yes">In Vivo</italic> Infection Dynamics in the Macaque Model of Tuberculosis
title_full Digitally Barcoding <italic toggle="yes">Mycobacterium tuberculosis</italic> Reveals <italic toggle="yes">In Vivo</italic> Infection Dynamics in the Macaque Model of Tuberculosis
title_fullStr Digitally Barcoding <italic toggle="yes">Mycobacterium tuberculosis</italic> Reveals <italic toggle="yes">In Vivo</italic> Infection Dynamics in the Macaque Model of Tuberculosis
title_full_unstemmed Digitally Barcoding <italic toggle="yes">Mycobacterium tuberculosis</italic> Reveals <italic toggle="yes">In Vivo</italic> Infection Dynamics in the Macaque Model of Tuberculosis
title_sort digitally barcoding <italic toggle="yes">mycobacterium tuberculosis</italic> reveals <italic toggle="yes">in vivo</italic> infection dynamics in the macaque model of tuberculosis
publisher American Society for Microbiology
publishDate 2017
url https://doaj.org/article/8187d85092c146618335b5e01ea34db7
work_keys_str_mv AT constancejmartin digitallybarcodingitalictoggleyesmycobacteriumtuberculosisitalicrevealsitalictoggleyesinvivoitalicinfectiondynamicsinthemacaquemodeloftuberculosis
AT anthonymcadena digitallybarcodingitalictoggleyesmycobacteriumtuberculosisitalicrevealsitalictoggleyesinvivoitalicinfectiondynamicsinthemacaquemodeloftuberculosis
AT vivianwleung digitallybarcodingitalictoggleyesmycobacteriumtuberculosisitalicrevealsitalictoggleyesinvivoitalicinfectiondynamicsinthemacaquemodeloftuberculosis
AT philanalinglin digitallybarcodingitalictoggleyesmycobacteriumtuberculosisitalicrevealsitalictoggleyesinvivoitalicinfectiondynamicsinthemacaquemodeloftuberculosis
AT paulinemaiello digitallybarcodingitalictoggleyesmycobacteriumtuberculosisitalicrevealsitalictoggleyesinvivoitalicinfectiondynamicsinthemacaquemodeloftuberculosis
AT nathanhicks digitallybarcodingitalictoggleyesmycobacteriumtuberculosisitalicrevealsitalictoggleyesinvivoitalicinfectiondynamicsinthemacaquemodeloftuberculosis
AT michaelrchase digitallybarcodingitalictoggleyesmycobacteriumtuberculosisitalicrevealsitalictoggleyesinvivoitalicinfectiondynamicsinthemacaquemodeloftuberculosis
AT joannelflynn digitallybarcodingitalictoggleyesmycobacteriumtuberculosisitalicrevealsitalictoggleyesinvivoitalicinfectiondynamicsinthemacaquemodeloftuberculosis
AT sarahmfortune digitallybarcodingitalictoggleyesmycobacteriumtuberculosisitalicrevealsitalictoggleyesinvivoitalicinfectiondynamicsinthemacaquemodeloftuberculosis
_version_ 1718427348526694400