Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach
A cost function involving the eigenvalues of an elastic structure is optimized using a phase-field approach, which allows for topology changes and multiple materials.We show continuity and differentiability of simple eigenvalues in the phase-field context. Existence of global minimizers can be shown...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/819050d9b1d74959816b80dead51fd38 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:819050d9b1d74959816b80dead51fd38 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:819050d9b1d74959816b80dead51fd382021-12-05T14:10:40ZShape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach2191-94962191-950X10.1515/anona-2020-0183https://doaj.org/article/819050d9b1d74959816b80dead51fd382021-07-01T00:00:00Zhttps://doi.org/10.1515/anona-2020-0183https://doaj.org/toc/2191-9496https://doaj.org/toc/2191-950XA cost function involving the eigenvalues of an elastic structure is optimized using a phase-field approach, which allows for topology changes and multiple materials.We show continuity and differentiability of simple eigenvalues in the phase-field context. Existence of global minimizers can be shown, for which first order necessary optimality conditions can be obtained in generic situations. Furthermore, a combined eigenvalue and compliance optimization is discussed.Garcke HaraldHüttl PaulKnopf PatrikDe Gruyterarticleshape optimizationtopology optimizationeigenvalue problemlinear elasticitymulti-phase-field model35p0549q1049r0574b0574p0574p15AnalysisQA299.6-433ENAdvances in Nonlinear Analysis, Vol 11, Iss 1, Pp 159-197 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
shape optimization topology optimization eigenvalue problem linear elasticity multi-phase-field model 35p05 49q10 49r05 74b05 74p05 74p15 Analysis QA299.6-433 |
spellingShingle |
shape optimization topology optimization eigenvalue problem linear elasticity multi-phase-field model 35p05 49q10 49r05 74b05 74p05 74p15 Analysis QA299.6-433 Garcke Harald Hüttl Paul Knopf Patrik Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach |
description |
A cost function involving the eigenvalues of an elastic structure is optimized using a phase-field approach, which allows for topology changes and multiple materials.We show continuity and differentiability of simple eigenvalues in the phase-field context. Existence of global minimizers can be shown, for which first order necessary optimality conditions can be obtained in generic situations. Furthermore, a combined eigenvalue and compliance optimization is discussed. |
format |
article |
author |
Garcke Harald Hüttl Paul Knopf Patrik |
author_facet |
Garcke Harald Hüttl Paul Knopf Patrik |
author_sort |
Garcke Harald |
title |
Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach |
title_short |
Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach |
title_full |
Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach |
title_fullStr |
Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach |
title_full_unstemmed |
Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach |
title_sort |
shape and topology optimization involving the eigenvalues of an elastic structure: a multi-phase-field approach |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/819050d9b1d74959816b80dead51fd38 |
work_keys_str_mv |
AT garckeharald shapeandtopologyoptimizationinvolvingtheeigenvaluesofanelasticstructureamultiphasefieldapproach AT huttlpaul shapeandtopologyoptimizationinvolvingtheeigenvaluesofanelasticstructureamultiphasefieldapproach AT knopfpatrik shapeandtopologyoptimizationinvolvingtheeigenvaluesofanelasticstructureamultiphasefieldapproach |
_version_ |
1718371848807251968 |