Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach

A cost function involving the eigenvalues of an elastic structure is optimized using a phase-field approach, which allows for topology changes and multiple materials.We show continuity and differentiability of simple eigenvalues in the phase-field context. Existence of global minimizers can be shown...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Garcke Harald, Hüttl Paul, Knopf Patrik
Format: article
Langue:EN
Publié: De Gruyter 2021
Sujets:
Accès en ligne:https://doaj.org/article/819050d9b1d74959816b80dead51fd38
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
id oai:doaj.org-article:819050d9b1d74959816b80dead51fd38
record_format dspace
spelling oai:doaj.org-article:819050d9b1d74959816b80dead51fd382021-12-05T14:10:40ZShape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach2191-94962191-950X10.1515/anona-2020-0183https://doaj.org/article/819050d9b1d74959816b80dead51fd382021-07-01T00:00:00Zhttps://doi.org/10.1515/anona-2020-0183https://doaj.org/toc/2191-9496https://doaj.org/toc/2191-950XA cost function involving the eigenvalues of an elastic structure is optimized using a phase-field approach, which allows for topology changes and multiple materials.We show continuity and differentiability of simple eigenvalues in the phase-field context. Existence of global minimizers can be shown, for which first order necessary optimality conditions can be obtained in generic situations. Furthermore, a combined eigenvalue and compliance optimization is discussed.Garcke HaraldHüttl PaulKnopf PatrikDe Gruyterarticleshape optimizationtopology optimizationeigenvalue problemlinear elasticitymulti-phase-field model35p0549q1049r0574b0574p0574p15AnalysisQA299.6-433ENAdvances in Nonlinear Analysis, Vol 11, Iss 1, Pp 159-197 (2021)
institution DOAJ
collection DOAJ
language EN
topic shape optimization
topology optimization
eigenvalue problem
linear elasticity
multi-phase-field model
35p05
49q10
49r05
74b05
74p05
74p15
Analysis
QA299.6-433
spellingShingle shape optimization
topology optimization
eigenvalue problem
linear elasticity
multi-phase-field model
35p05
49q10
49r05
74b05
74p05
74p15
Analysis
QA299.6-433
Garcke Harald
Hüttl Paul
Knopf Patrik
Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach
description A cost function involving the eigenvalues of an elastic structure is optimized using a phase-field approach, which allows for topology changes and multiple materials.We show continuity and differentiability of simple eigenvalues in the phase-field context. Existence of global minimizers can be shown, for which first order necessary optimality conditions can be obtained in generic situations. Furthermore, a combined eigenvalue and compliance optimization is discussed.
format article
author Garcke Harald
Hüttl Paul
Knopf Patrik
author_facet Garcke Harald
Hüttl Paul
Knopf Patrik
author_sort Garcke Harald
title Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach
title_short Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach
title_full Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach
title_fullStr Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach
title_full_unstemmed Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach
title_sort shape and topology optimization involving the eigenvalues of an elastic structure: a multi-phase-field approach
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/819050d9b1d74959816b80dead51fd38
work_keys_str_mv AT garckeharald shapeandtopologyoptimizationinvolvingtheeigenvaluesofanelasticstructureamultiphasefieldapproach
AT huttlpaul shapeandtopologyoptimizationinvolvingtheeigenvaluesofanelasticstructureamultiphasefieldapproach
AT knopfpatrik shapeandtopologyoptimizationinvolvingtheeigenvaluesofanelasticstructureamultiphasefieldapproach
_version_ 1718371848807251968