Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach
A cost function involving the eigenvalues of an elastic structure is optimized using a phase-field approach, which allows for topology changes and multiple materials.We show continuity and differentiability of simple eigenvalues in the phase-field context. Existence of global minimizers can be shown...
Guardado en:
Autores principales: | Garcke Harald, Hüttl Paul, Knopf Patrik |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/819050d9b1d74959816b80dead51fd38 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Ground state solutions to a class of critical Schrödinger problem
por: Mao Anmin, et al.
Publicado: (2021) -
Compact Sobolev-Slobodeckij embeddings and positive solutions to fractional Laplacian equations
por: Han Qi
Publicado: (2021) -
Banhatti, revan and hyper-indices of silicon carbide Si2C3-III[n,m]
por: Zhao Dongming, et al.
Publicado: (2021) -
Rainbow neighbourhood number of graphs
por: Kok,Johan, et al.
Publicado: (2019) -
Path homology theory of edge-colored graphs
por: Muranov Yuri V., et al.
Publicado: (2021)