Analysis of Gastrointestinal Acoustic Activity Using Deep Neural Networks
Automated bowel sound (BS) analysis methods were already well developed by the early 2000s. Accuracy of ~90% had been achieved by several teams using various analytical approaches. Clinical research on BS had revealed their high potential in the non-invasive investigation of irritable bowel syndrome...
Guardado en:
Autores principales: | Jakub Ficek, Kacper Radzikowski, Jan Krzysztof Nowak, Osamu Yoshie, Jaroslaw Walkowiak, Robert Nowak |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/81992e7d88854053ab89b148fe3c6054 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic Detection and Classification of Cough Events Based on Deep Learning
por: Hossein Tabatabaei Seyed Amir, et al.
Publicado: (2020) -
Abnormal Respiratory Sounds Classification Using Deep CNN Through Artificial Noise Addition
por: Rizwana Zulfiqar, et al.
Publicado: (2021) -
Acoustical physics
Publicado: (1993) -
Deep Neural Network-Based Storey Drift Modelling of Precast Concrete Structures Using RStudio
por: Nitin Dahiya, et al.
Publicado: (2021) - Archives of acoustics quarterly