Comparison of response surface methodology and hybrid-training approach of artificial neural network in modelling the properties of concrete containing steel fibre extracted from waste tyres
The study presents a comparative approach between Response Surface Methodology (RSM) and hybridized Genetic Algorithm of Artificial Neural Network (GA-ANN) in predicting the water absorption, compressive strength, flexural strength, split tensile strength and slump for steel fibre reinforced concret...
Guardado en:
Autores principales: | Temitope F. Awolusi, Oluwaseyi L. Oke, Olufunke O. Akinkurolere, Olumoyewa D. Atoyebi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/81a52b9c4d5d4ba2adfbb0c18330554c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Textile-Reinforced Concrete Versus Steel-Reinforced Concrete in Flexural Performance of Full-Scale Concrete Beams
por: Fahed Alrshoudi
Publicado: (2021) -
Impact resistance of steel fiber-reinforced self-compacting concrete
por: Abid Sallal, et al.
Publicado: (2021) -
Laboratory Tests of Concrete Beams Reinforced with Recycled Steel Fibres and Steel Bars
por: Małgorzata Pająk, et al.
Publicado: (2021) -
Fundamental Studies on the Use of Distributed Fibre Optical Sensing on Concrete and Reinforcing Bars
por: Tena Galkovski, et al.
Publicado: (2021) -
Strength behaviour of Corn Husk Ash polymer concrete reinforced with coconut fibre
por: Emmanuel Appiah-Kubi, et al.
Publicado: (2021)