Short and Medium-Term Prediction of Winter Wheat NDVI Based on the DTW–LSTM Combination Method and MODIS Time Series Data
The normalized difference vegetation index (NDVI) is an important agricultural parameter that is closely correlated with crop growth. In this study, a novel method combining the dynamic time warping (DTW) model and the long short-term memory (LSTM) deep recurrent neural network model was developed t...
Guardado en:
Autores principales: | Fa Zhao, Guijun Yang, Hao Yang, Yaohui Zhu, Yang Meng, Shaoyu Han, Xinlei Bu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/81aae3657daa43ed92761ff20d95cedb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
USA Crop Yield Estimation with MODIS NDVI: Are Remotely Sensed Models Better than Simple Trend Analyses?
por: David M. Johnson, et al.
Publicado: (2021) -
An Improved Self-Training Method for Positive Unlabeled Time Series Classification Using DTW Barycenter Averaging
por: Jing Li, et al.
Publicado: (2021) -
Vertical Differences in the Long-Term Trends and Breakpoints of NDVI and Climate Factors in Taiwan
por: Hui Ping Tsai, et al.
Publicado: (2021) -
Spatial–Temporal Evolution of Vegetation NDVI in Association with Climatic, Environmental and Anthropogenic Factors in the Loess Plateau, China during 2000–2015: Quantitative Analysis Based on Geographical Detector Model
por: Yi Dong, et al.
Publicado: (2021) -
Progressive Dynamic Time Warping for Noninvasive Blood Pressure Estimation
por: Pielmus Alexandru-Gabriel, et al.
Publicado: (2020)