Combination of RNA-Seq transcriptomics and iTRAQ proteomics reveal the mechanism involved in fresh-cut yam yellowing

Abstract The aim of this study was to examine the regulation of transcriptomics and proteomics related to the yellowing of fresh-cut yams after storage. The comparison of yellow fresh-cut yam (YFY) vs. white fresh-cut yam (control) revealed 6894 upregulated and 6800 downregulated differentially expr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shuang Guo, Dan Wang, Yue Ma, Yan Zhang, Xiaoyan Zhao
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/81c5dd3f7e024bdd956ed63215fb1031
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The aim of this study was to examine the regulation of transcriptomics and proteomics related to the yellowing of fresh-cut yams after storage. The comparison of yellow fresh-cut yam (YFY) vs. white fresh-cut yam (control) revealed 6894 upregulated and 6800 downregulated differentially expressed genes along with 1277 upregulated and 677 downregulated differentially expressed proteins. The results showed that the total carotenoids, flavonoids, and bisdemethoxycurcumin in YFY were higher than in the control due to the significant up-regulation of critical genes in the carotenoid biosynthesis pathway, flavonoid biosynthesis pathway, and stilbenoid, diarylheptanoid, and gingerol biosynthesis pathway. In addition, the tricarboxylic acid cycle and phenylpropanoid biosynthesis were both enhanced in YFY compared to the control, providing energy and precursors for the formation of yellow pigments. The results suggest that the synthesis of yellow pigments is regulated by critical genes, which might explain the yellowing of fresh-cut yam after storage.