A New Method of Matrix Decomposition to Get the Determinants and Inverses of r-Circulant Matrices with Fibonacci and Lucas Numbers

We use a new method of matrix decomposition for r-circulant matrix to get the determinants of An=CircrF1,F2,…,Fn and Bn=CircrL1,L2,…,Ln, where Fn is the Fibonacci numbers and Ln is the Lucas numbers. Based on these determinants and the nonsingular conditions, inverse matrices are derived. The expres...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jiangming Ma, Tao Qiu, Chengyuan He
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/81d056a53b2744cabcbd3cc20ee534de
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We use a new method of matrix decomposition for r-circulant matrix to get the determinants of An=CircrF1,F2,…,Fn and Bn=CircrL1,L2,…,Ln, where Fn is the Fibonacci numbers and Ln is the Lucas numbers. Based on these determinants and the nonsingular conditions, inverse matrices are derived. The expressions of the determinants and inverse matrices are represented by Fibonacci and Lucas Numbers. In this study, the formulas of determinants and inverse matrices are much simpler and concise for programming and reduce the computational time.