A New Method of Matrix Decomposition to Get the Determinants and Inverses of r-Circulant Matrices with Fibonacci and Lucas Numbers
We use a new method of matrix decomposition for r-circulant matrix to get the determinants of An=CircrF1,F2,…,Fn and Bn=CircrL1,L2,…,Ln, where Fn is the Fibonacci numbers and Ln is the Lucas numbers. Based on these determinants and the nonsingular conditions, inverse matrices are derived. The expres...
Guardado en:
Autores principales: | Jiangming Ma, Tao Qiu, Chengyuan He |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/81d056a53b2744cabcbd3cc20ee534de |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On the generating matrices of the Ê-Fibonacci numbers
por: Falcon,Sergio
Publicado: (2013) -
SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERS
por: Čerin,Zvonko
Publicado: (2013) -
A Comprehensive Family of Biunivalent Functions Defined by k-Fibonacci Numbers
por: Basem Aref Frasin, et al.
Publicado: (2021) -
Distance Fibonacci Polynomials by Graph Methods
por: Dominik Strzałka, et al.
Publicado: (2021) -
Formulated New Identities of Fibonacci Numbers with James Abacus Diagram
por: Eman F. Mohommed
Publicado: (2021)