Visual processing mode switching regulated by VIP cells
Abstract The responses of neurons in mouse primary visual cortex (V1) to visual stimuli depend on behavioral states. Specifically, surround suppression is reduced during locomotion. Although locomotion-induced vasoactive intestinal polypeptide positive (VIP) interneuron depolarization can account fo...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/81d9a8fbbc4443bca99024672f3c2a74 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:81d9a8fbbc4443bca99024672f3c2a74 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:81d9a8fbbc4443bca99024672f3c2a742021-12-02T16:06:16ZVisual processing mode switching regulated by VIP cells10.1038/s41598-017-01830-02045-2322https://doaj.org/article/81d9a8fbbc4443bca99024672f3c2a742017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-01830-0https://doaj.org/toc/2045-2322Abstract The responses of neurons in mouse primary visual cortex (V1) to visual stimuli depend on behavioral states. Specifically, surround suppression is reduced during locomotion. Although locomotion-induced vasoactive intestinal polypeptide positive (VIP) interneuron depolarization can account for the reduction of surround suppression, the functions of VIP cell depolarization are not fully understood. Here we utilize a firing rate model and a computational model to elucidate the potential functions of VIP cell depolarization during locomotion. Our analyses suggest 1) that surround suppression sharpens the visual responses in V1 to a stationary scene, 2) that depolarized VIP cells enhance V1 responses to moving objects by reducing self-induced surround suppression and 3) that during locomotion V1 neuron responses to some features of the moving objects can be selectively enhanced. Thus, VIP cells regulate surround suppression to allow pyramidal neurons to optimally encode visual information independent of behavioral state.Jung Hoon LeeStefan MihalasNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-15 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jung Hoon Lee Stefan Mihalas Visual processing mode switching regulated by VIP cells |
description |
Abstract The responses of neurons in mouse primary visual cortex (V1) to visual stimuli depend on behavioral states. Specifically, surround suppression is reduced during locomotion. Although locomotion-induced vasoactive intestinal polypeptide positive (VIP) interneuron depolarization can account for the reduction of surround suppression, the functions of VIP cell depolarization are not fully understood. Here we utilize a firing rate model and a computational model to elucidate the potential functions of VIP cell depolarization during locomotion. Our analyses suggest 1) that surround suppression sharpens the visual responses in V1 to a stationary scene, 2) that depolarized VIP cells enhance V1 responses to moving objects by reducing self-induced surround suppression and 3) that during locomotion V1 neuron responses to some features of the moving objects can be selectively enhanced. Thus, VIP cells regulate surround suppression to allow pyramidal neurons to optimally encode visual information independent of behavioral state. |
format |
article |
author |
Jung Hoon Lee Stefan Mihalas |
author_facet |
Jung Hoon Lee Stefan Mihalas |
author_sort |
Jung Hoon Lee |
title |
Visual processing mode switching regulated by VIP cells |
title_short |
Visual processing mode switching regulated by VIP cells |
title_full |
Visual processing mode switching regulated by VIP cells |
title_fullStr |
Visual processing mode switching regulated by VIP cells |
title_full_unstemmed |
Visual processing mode switching regulated by VIP cells |
title_sort |
visual processing mode switching regulated by vip cells |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/81d9a8fbbc4443bca99024672f3c2a74 |
work_keys_str_mv |
AT junghoonlee visualprocessingmodeswitchingregulatedbyvipcells AT stefanmihalas visualprocessingmodeswitchingregulatedbyvipcells |
_version_ |
1718385035328880640 |