Accurate Single-Cell Clustering through Ensemble Similarity Learning
Single-cell sequencing provides novel means to interpret the transcriptomic profiles of individual cells. To obtain in-depth analysis of single-cell sequencing, it requires effective computational methods to accurately predict single-cell clusters because single-cell sequencing techniques only provi...
Guardado en:
Autores principales: | Hyundoo Jeong, Sungtae Shin, Hong-Gi Yeom |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/81efa5a7ee3344549d181b43bcc5a857 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
SSRE: Cell Type Detection Based on Sparse Subspace Representation and Similarity Enhancement
por: Zhenlan Liang, et al.
Publicado: (2021) -
An Ensemble Method for Missing Data of Environmental Sensor Considering Univariate and Multivariate Characteristics
por: Chanyoung Choi, et al.
Publicado: (2021) -
Cluster Reduction: Deletion or Coalescence?
por: Max W. Wheeler
Publicado: (2005) -
Automatic RadLex coding of Chinese structured radiology reports based on text similarity ensemble
por: Yani Chen, et al.
Publicado: (2021) -
Trip Purpose Imputation Using GPS Trajectories with Machine Learning
por: Qinggang Gao, et al.
Publicado: (2021)