Deep convolutional neural networks to predict cardiovascular risk from computed tomography
Coronary artery calcium is an accurate predictor of cardiovascular events but this information is not routinely quantified. Here the authors show a robust and time-efficient deep learning system to automatically quantify coronary calcium on CT scans and predict cardiovascular events in a large, mult...
Guardado en:
Autores principales: | Roman Zeleznik, Borek Foldyna, Parastou Eslami, Jakob Weiss, Ivanov Alexander, Jana Taron, Chintan Parmar, Raza M. Alvi, Dahlia Banerji, Mio Uno, Yasuka Kikuchi, Julia Karady, Lili Zhang, Jan-Erik Scholtz, Thomas Mayrhofer, Asya Lyass, Taylor F. Mahoney, Joseph M. Massaro, Ramachandran S. Vasan, Pamela S. Douglas, Udo Hoffmann, Michael T. Lu, Hugo J. W. L. Aerts |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/81f5a66b63fb4263b0d804c5ab0e5cbe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep-learning system to improve the quality and efficiency of volumetric heart segmentation for breast cancer
por: Roman Zeleznik, et al.
Publicado: (2021) -
Radiologists can visually predict mortality risk based on the gestalt of chest radiographs comparable to a deep learning network
por: Jakob Weiss, et al.
Publicado: (2021) -
Associations between radiologist-defined semantic and automatically computed radiomic features in non-small cell lung cancer
por: Stephen S. F. Yip, et al.
Publicado: (2017) -
Handbook of Indicators of Institutionalization of Academic Disciplines in SSH
por: Fleck Christian, et al.
Publicado: (2020) -
Durability study of reinforced polyester composite used as pipe lining under artificial aging conditions
por: Parastou Kharazmi, et al.
Publicado: (2019)