Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs
Abstract Human spinal balance assessment relies considerably on sagittal radiographic parameter measurement. Deep learning could be applied for automatic landmark detection and alignment analysis, with mild to moderate standard errors and favourable correlations with manual measurement. In this stud...
Guardado en:
Autores principales: | Yu-Cheng Yeh, Chi-Hung Weng, Yu-Jui Huang, Chen-Ju Fu, Tsung-Ting Tsai, Chao-Yuan Yeh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/81f7b934fe4245148f554804ed105461 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
2-step deep learning model for landmarks localization in spine radiographs
por: Andrea Cina, et al.
Publicado: (2021) -
Author Correction: Fully Automatic System for Accurate Localisation and Analysis of Cephalometric Landmarks in Lateral Cephalograms
por: Claudia Lindner, et al.
Publicado: (2021) -
Effect of limb rotation on radiographic alignment measurement in mal-aligned knees
por: Xiaoshu Sun, et al.
Publicado: (2021) -
Automatic classification of canine thoracic radiographs using deep learning
por: Tommaso Banzato, et al.
Publicado: (2021) -
Automated detection of cervical ossification of the posterior longitudinal ligament in plain lateral radiographs of the cervical spine using a convolutional neural network
por: Masataka Miura, et al.
Publicado: (2021)