Simplified Identification Strategy of Load Model Based on Global Sensitivity Analysis

Load modeling plays an important role in accessing and enhancing the dynamic stability of power systems. Though the Synthesis Load Model Considering Voltage Regulation of Distribution Network (<inline-formula> <tex-math notation="LaTeX">$\pi $ </tex-math></inline-formu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xin Tian, Xueliang Lii, Long Zhao, Zuoyun Tan, Shuchen Luo, Canbing Li
Formato: article
Lenguaje:EN
Publicado: IEEE 2020
Materias:
Acceso en línea:https://doaj.org/article/81fc8e91cbc54776bc9bf5bb9d715312
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:81fc8e91cbc54776bc9bf5bb9d715312
record_format dspace
spelling oai:doaj.org-article:81fc8e91cbc54776bc9bf5bb9d7153122021-11-19T00:05:13ZSimplified Identification Strategy of Load Model Based on Global Sensitivity Analysis2169-353610.1109/ACCESS.2020.3007639https://doaj.org/article/81fc8e91cbc54776bc9bf5bb9d7153122020-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9134728/https://doaj.org/toc/2169-3536Load modeling plays an important role in accessing and enhancing the dynamic stability of power systems. Though the Synthesis Load Model Considering Voltage Regulation of Distribution Network (<inline-formula> <tex-math notation="LaTeX">$\pi $ </tex-math></inline-formula> model) has high accuracy, its parameters are too many. In order to improve the identification efficiency and reduce the difficulty of identification, a simplified model identification strategy based on parameter sensitivity analysis is proposed. Firstly, based on the global sensitivity analysis, the sensitivity analysis of the model parameters is carried out to obtain the First Order Sensitivity Indices (<italic>FSI</italic>)and Total Sensitivity Indices (<italic>TSI</italic>). Secondly, the <italic>FSI</italic> and <italic>TSI</italic> of each parameter are analyzed, and the effect on the output of model of each parameter is determined by <italic>FSI</italic>. For less influential parameters, whether the parameter should be fixed as constant is determined by the value of <italic>TSI</italic>. The parameter whose <italic>TSI</italic> equal or approximately equal to zero should be fixed as a constant. Finally, the improved genetic algorithm is used to identify the parameter-simplified model, and the effectiveness of the simplified identification strategy is verified by comparing the fitting effects with the measured curve and the residual and the integrated parameter models.Xin TianXueliang LiiLong ZhaoZuoyun TanShuchen LuoCanbing LiIEEEarticleLoad modelingsynthesis load modelsensitivity analysisglobal sensitivity analysisElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 8, Pp 131545-131552 (2020)
institution DOAJ
collection DOAJ
language EN
topic Load modeling
synthesis load model
sensitivity analysis
global sensitivity analysis
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
spellingShingle Load modeling
synthesis load model
sensitivity analysis
global sensitivity analysis
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Xin Tian
Xueliang Lii
Long Zhao
Zuoyun Tan
Shuchen Luo
Canbing Li
Simplified Identification Strategy of Load Model Based on Global Sensitivity Analysis
description Load modeling plays an important role in accessing and enhancing the dynamic stability of power systems. Though the Synthesis Load Model Considering Voltage Regulation of Distribution Network (<inline-formula> <tex-math notation="LaTeX">$\pi $ </tex-math></inline-formula> model) has high accuracy, its parameters are too many. In order to improve the identification efficiency and reduce the difficulty of identification, a simplified model identification strategy based on parameter sensitivity analysis is proposed. Firstly, based on the global sensitivity analysis, the sensitivity analysis of the model parameters is carried out to obtain the First Order Sensitivity Indices (<italic>FSI</italic>)and Total Sensitivity Indices (<italic>TSI</italic>). Secondly, the <italic>FSI</italic> and <italic>TSI</italic> of each parameter are analyzed, and the effect on the output of model of each parameter is determined by <italic>FSI</italic>. For less influential parameters, whether the parameter should be fixed as constant is determined by the value of <italic>TSI</italic>. The parameter whose <italic>TSI</italic> equal or approximately equal to zero should be fixed as a constant. Finally, the improved genetic algorithm is used to identify the parameter-simplified model, and the effectiveness of the simplified identification strategy is verified by comparing the fitting effects with the measured curve and the residual and the integrated parameter models.
format article
author Xin Tian
Xueliang Lii
Long Zhao
Zuoyun Tan
Shuchen Luo
Canbing Li
author_facet Xin Tian
Xueliang Lii
Long Zhao
Zuoyun Tan
Shuchen Luo
Canbing Li
author_sort Xin Tian
title Simplified Identification Strategy of Load Model Based on Global Sensitivity Analysis
title_short Simplified Identification Strategy of Load Model Based on Global Sensitivity Analysis
title_full Simplified Identification Strategy of Load Model Based on Global Sensitivity Analysis
title_fullStr Simplified Identification Strategy of Load Model Based on Global Sensitivity Analysis
title_full_unstemmed Simplified Identification Strategy of Load Model Based on Global Sensitivity Analysis
title_sort simplified identification strategy of load model based on global sensitivity analysis
publisher IEEE
publishDate 2020
url https://doaj.org/article/81fc8e91cbc54776bc9bf5bb9d715312
work_keys_str_mv AT xintian simplifiedidentificationstrategyofloadmodelbasedonglobalsensitivityanalysis
AT xuelianglii simplifiedidentificationstrategyofloadmodelbasedonglobalsensitivityanalysis
AT longzhao simplifiedidentificationstrategyofloadmodelbasedonglobalsensitivityanalysis
AT zuoyuntan simplifiedidentificationstrategyofloadmodelbasedonglobalsensitivityanalysis
AT shuchenluo simplifiedidentificationstrategyofloadmodelbasedonglobalsensitivityanalysis
AT canbingli simplifiedidentificationstrategyofloadmodelbasedonglobalsensitivityanalysis
_version_ 1718420677030051840