Temu Kembali Kemiripan Motif Citra Tenun Menggunakan Transformasi Wavelet Diskrit Dan GLCM

Indonesia is a country with cultural diversity. One of the famous cultural heritages in Indonesia is Woven Fabrics. East Nusa Tenggara Province, especially South Central Timor, is an area that also produces weaving. There are 3 types of woven fabric motifs, namely the Buna, Lotis, and Futus motifs w...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Anderias Bai Seran, Aviv Yuniar Rahman, Istiadi Istiadi
Formato: article
Lenguaje:ID
Publicado: Ikatan Ahli Indormatika Indonesia 2021
Materias:
Acceso en línea:https://doaj.org/article/81fe3ec7f87d46e1bd5725c385a8a7a5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:81fe3ec7f87d46e1bd5725c385a8a7a5
record_format dspace
spelling oai:doaj.org-article:81fe3ec7f87d46e1bd5725c385a8a7a52021-11-16T13:16:11ZTemu Kembali Kemiripan Motif Citra Tenun Menggunakan Transformasi Wavelet Diskrit Dan GLCM2580-076010.29207/resti.v5i5.3484https://doaj.org/article/81fe3ec7f87d46e1bd5725c385a8a7a52021-10-01T00:00:00Zhttp://jurnal.iaii.or.id/index.php/RESTI/article/view/3484https://doaj.org/toc/2580-0760Indonesia is a country with cultural diversity. One of the famous cultural heritages in Indonesia is Woven Fabrics. East Nusa Tenggara Province, especially South Central Timor, is an area that also produces weaving. There are 3 types of woven fabric motifs, namely the Buna, Lotis, and Futus motifs which were inherited from their ancestors. Woven cloth is unique because it is made through a ritual process and is used for traditional ceremonies, weddings, funerals, and so on. However, along with the development of technology, ordinary people increasingly forget the motifs of woven fabrics and have difficulty distinguishing the motifs. The function of this research is to improve the performance of previous studies in the process of finding the similarity of weaving image motifs using discrete wavelet transforms and GLCM. The results are known, calculations using a confusion matrix on discrete wavelet transformation feature extraction and GLCM, comparisons on discrete wavelet transformations produce an accuracy rate of 70% Minkowski matrix, 60% Manhattan matrix, 60% Canberra matrix, 20% Euclidean matrix. Comparison of feature extraction calculations on GLCM produces an average quality of the Minkowski matrix of 90% and the lowest level of accuracy on the Euclidean, Manhattan, and Canberra matrices of 80%.Anderias Bai SeranAviv Yuniar RahmanIstiadi IstiadiIkatan Ahli Indormatika Indonesiaarticlewoven fabric, discrete wavelet, glcm, confusion matrix accuracy.Systems engineeringTA168Information technologyT58.5-58.64IDJurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol 5, Iss 5, Pp 958-966 (2021)
institution DOAJ
collection DOAJ
language ID
topic woven fabric, discrete wavelet, glcm, confusion matrix accuracy.
Systems engineering
TA168
Information technology
T58.5-58.64
spellingShingle woven fabric, discrete wavelet, glcm, confusion matrix accuracy.
Systems engineering
TA168
Information technology
T58.5-58.64
Anderias Bai Seran
Aviv Yuniar Rahman
Istiadi Istiadi
Temu Kembali Kemiripan Motif Citra Tenun Menggunakan Transformasi Wavelet Diskrit Dan GLCM
description Indonesia is a country with cultural diversity. One of the famous cultural heritages in Indonesia is Woven Fabrics. East Nusa Tenggara Province, especially South Central Timor, is an area that also produces weaving. There are 3 types of woven fabric motifs, namely the Buna, Lotis, and Futus motifs which were inherited from their ancestors. Woven cloth is unique because it is made through a ritual process and is used for traditional ceremonies, weddings, funerals, and so on. However, along with the development of technology, ordinary people increasingly forget the motifs of woven fabrics and have difficulty distinguishing the motifs. The function of this research is to improve the performance of previous studies in the process of finding the similarity of weaving image motifs using discrete wavelet transforms and GLCM. The results are known, calculations using a confusion matrix on discrete wavelet transformation feature extraction and GLCM, comparisons on discrete wavelet transformations produce an accuracy rate of 70% Minkowski matrix, 60% Manhattan matrix, 60% Canberra matrix, 20% Euclidean matrix. Comparison of feature extraction calculations on GLCM produces an average quality of the Minkowski matrix of 90% and the lowest level of accuracy on the Euclidean, Manhattan, and Canberra matrices of 80%.
format article
author Anderias Bai Seran
Aviv Yuniar Rahman
Istiadi Istiadi
author_facet Anderias Bai Seran
Aviv Yuniar Rahman
Istiadi Istiadi
author_sort Anderias Bai Seran
title Temu Kembali Kemiripan Motif Citra Tenun Menggunakan Transformasi Wavelet Diskrit Dan GLCM
title_short Temu Kembali Kemiripan Motif Citra Tenun Menggunakan Transformasi Wavelet Diskrit Dan GLCM
title_full Temu Kembali Kemiripan Motif Citra Tenun Menggunakan Transformasi Wavelet Diskrit Dan GLCM
title_fullStr Temu Kembali Kemiripan Motif Citra Tenun Menggunakan Transformasi Wavelet Diskrit Dan GLCM
title_full_unstemmed Temu Kembali Kemiripan Motif Citra Tenun Menggunakan Transformasi Wavelet Diskrit Dan GLCM
title_sort temu kembali kemiripan motif citra tenun menggunakan transformasi wavelet diskrit dan glcm
publisher Ikatan Ahli Indormatika Indonesia
publishDate 2021
url https://doaj.org/article/81fe3ec7f87d46e1bd5725c385a8a7a5
work_keys_str_mv AT anderiasbaiseran temukembalikemiripanmotifcitratenunmenggunakantransformasiwaveletdiskritdanglcm
AT avivyuniarrahman temukembalikemiripanmotifcitratenunmenggunakantransformasiwaveletdiskritdanglcm
AT istiadiistiadi temukembalikemiripanmotifcitratenunmenggunakantransformasiwaveletdiskritdanglcm
_version_ 1718426489707298816