Two new results about quantum exact learning

We present two new results about exact learning by quantum computers. First, we show how to exactly learn a $k$-Fourier-sparse $n$-bit Boolean function from $O(k^{1.5}(\log k)^2)$ uniform quantum examples for that function. This improves over the bound of $\widetilde{\Theta}(kn)$ uniformly random $c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Srinivasan Arunachalam, Sourav Chakraborty, Troy Lee, Manaswi Paraashar, Ronald de Wolf
Formato: article
Lenguaje:EN
Publicado: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2021
Materias:
Acceso en línea:https://doaj.org/article/8200064c8301448c9fed6779fd3e55be
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8200064c8301448c9fed6779fd3e55be
record_format dspace
spelling oai:doaj.org-article:8200064c8301448c9fed6779fd3e55be2021-11-24T14:44:09ZTwo new results about quantum exact learning2521-327X10.22331/q-2021-11-24-587https://doaj.org/article/8200064c8301448c9fed6779fd3e55be2021-11-01T00:00:00Zhttps://quantum-journal.org/papers/q-2021-11-24-587/pdf/https://doaj.org/toc/2521-327XWe present two new results about exact learning by quantum computers. First, we show how to exactly learn a $k$-Fourier-sparse $n$-bit Boolean function from $O(k^{1.5}(\log k)^2)$ uniform quantum examples for that function. This improves over the bound of $\widetilde{\Theta}(kn)$ uniformly random $classical$ examples (Haviv and Regev, CCC'15). Additionally, we provide a possible direction to improve our $\widetilde{O}(k^{1.5})$ upper bound by proving an improvement of Chang's lemma for $k$-Fourier-sparse Boolean functions. Second, we show that if a concept class $\mathcal{C}$ can be exactly learned using $Q$ quantum membership queries, then it can also be learned using $O\left(\frac{Q^2}{\log Q}\log|\mathcal{C}|\right)$ $classical$ membership queries. This improves the previous-best simulation result (Servedio and Gortler, SICOMP'04) by a $\log Q$-factor.Srinivasan ArunachalamSourav ChakrabortyTroy LeeManaswi ParaasharRonald de WolfVerein zur Förderung des Open Access Publizierens in den QuantenwissenschaftenarticlePhysicsQC1-999ENQuantum, Vol 5, p 587 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
Srinivasan Arunachalam
Sourav Chakraborty
Troy Lee
Manaswi Paraashar
Ronald de Wolf
Two new results about quantum exact learning
description We present two new results about exact learning by quantum computers. First, we show how to exactly learn a $k$-Fourier-sparse $n$-bit Boolean function from $O(k^{1.5}(\log k)^2)$ uniform quantum examples for that function. This improves over the bound of $\widetilde{\Theta}(kn)$ uniformly random $classical$ examples (Haviv and Regev, CCC'15). Additionally, we provide a possible direction to improve our $\widetilde{O}(k^{1.5})$ upper bound by proving an improvement of Chang's lemma for $k$-Fourier-sparse Boolean functions. Second, we show that if a concept class $\mathcal{C}$ can be exactly learned using $Q$ quantum membership queries, then it can also be learned using $O\left(\frac{Q^2}{\log Q}\log|\mathcal{C}|\right)$ $classical$ membership queries. This improves the previous-best simulation result (Servedio and Gortler, SICOMP'04) by a $\log Q$-factor.
format article
author Srinivasan Arunachalam
Sourav Chakraborty
Troy Lee
Manaswi Paraashar
Ronald de Wolf
author_facet Srinivasan Arunachalam
Sourav Chakraborty
Troy Lee
Manaswi Paraashar
Ronald de Wolf
author_sort Srinivasan Arunachalam
title Two new results about quantum exact learning
title_short Two new results about quantum exact learning
title_full Two new results about quantum exact learning
title_fullStr Two new results about quantum exact learning
title_full_unstemmed Two new results about quantum exact learning
title_sort two new results about quantum exact learning
publisher Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
publishDate 2021
url https://doaj.org/article/8200064c8301448c9fed6779fd3e55be
work_keys_str_mv AT srinivasanarunachalam twonewresultsaboutquantumexactlearning
AT souravchakraborty twonewresultsaboutquantumexactlearning
AT troylee twonewresultsaboutquantumexactlearning
AT manaswiparaashar twonewresultsaboutquantumexactlearning
AT ronalddewolf twonewresultsaboutquantumexactlearning
_version_ 1718415000075239424