Two new results about quantum exact learning
We present two new results about exact learning by quantum computers. First, we show how to exactly learn a $k$-Fourier-sparse $n$-bit Boolean function from $O(k^{1.5}(\log k)^2)$ uniform quantum examples for that function. This improves over the bound of $\widetilde{\Theta}(kn)$ uniformly random $c...
Guardado en:
Autores principales: | Srinivasan Arunachalam, Sourav Chakraborty, Troy Lee, Manaswi Paraashar, Ronald de Wolf |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8200064c8301448c9fed6779fd3e55be |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Exact non-stationary solution for the density matrix of single two-level atom
por: Enachi, Nicolae, et al.
Publicado: (2009) -
Exact Long-Range Dielectric Screening and Interatomic Force Constants in Quasi-Two-Dimensional Crystals
por: Miquel Royo, et al.
Publicado: (2021) -
Exact Rank Reduction of Network Models
por: Eugenio Valdano, et al.
Publicado: (2019) -
Multipoint correlation functions at phase separation. Exact results from field theory
por: Alessio Squarcini
Publicado: (2021) -
Some exact wave solutions to a variety of the Schrödinger equation with two nonlinearity laws and conformable derivative
por: Yan Cao, et al.
Publicado: (2021)