Application of machine learning to predict the outcome of pediatric traumatic brain injury
Purpose: Traumatic brain injury (TBI) generally causes mortality and disability, particularly in children. Machine learning (ML) is a computer algorithm, applied as a clinical prediction tool. The present study aims to assess the predictability of ML for the functional outcomes of pediatric TBI. Met...
Guardado en:
Autores principales: | Thara Tunthanathip, Thakul Oearsakul |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8206904b5cd948df92003fa45753e150 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Modeling Structure–Activity Relationship of AMPK Activation
por: Jürgen Drewe, et al.
Publicado: (2021) -
Integrating Multiple Datasets and Machine Learning Algorithms for Satellite-Based Bathymetry in Seaports
por: Zhongqiang Wu, et al.
Publicado: (2021) -
Discrimination of Diabetic Retinopathy From Optical Coherence Tomography Angiography Images Using Machine Learning Methods
por: Zhiping Liu, et al.
Publicado: (2021) -
Machine Learning Algorithms to Predict In-Hospital Mortality in Patients with Traumatic Brain Injury
por: Sheng-Der Hsu, et al.
Publicado: (2021) -
Predicting Serum Levels of Lithium-Treated Patients: A Supervised Machine Learning Approach
por: Chih-Wei Hsu, et al.
Publicado: (2021)