Application of machine learning to predict the outcome of pediatric traumatic brain injury
Purpose: Traumatic brain injury (TBI) generally causes mortality and disability, particularly in children. Machine learning (ML) is a computer algorithm, applied as a clinical prediction tool. The present study aims to assess the predictability of ML for the functional outcomes of pediatric TBI. Met...
Enregistré dans:
Auteurs principaux: | Thara Tunthanathip, Thakul Oearsakul |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8206904b5cd948df92003fa45753e150 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Modeling Structure–Activity Relationship of AMPK Activation
par: Jürgen Drewe, et autres
Publié: (2021) -
Integrating Multiple Datasets and Machine Learning Algorithms for Satellite-Based Bathymetry in Seaports
par: Zhongqiang Wu, et autres
Publié: (2021) -
Discrimination of Diabetic Retinopathy From Optical Coherence Tomography Angiography Images Using Machine Learning Methods
par: Zhiping Liu, et autres
Publié: (2021) -
Machine Learning Algorithms to Predict In-Hospital Mortality in Patients with Traumatic Brain Injury
par: Sheng-Der Hsu, et autres
Publié: (2021) -
Predicting Serum Levels of Lithium-Treated Patients: A Supervised Machine Learning Approach
par: Chih-Wei Hsu, et autres
Publié: (2021)