Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning
The design and optimization of a metasurface is a computationally- and time-consuming effort. Here, the authors propose a neural network-based algorithm for functional metasurface design, and demonstrate it for some functional metasurfaces.
Guardado en:
Autores principales: | Ruichao Zhu, Tianshuo Qiu, Jiafu Wang, Sai Sui, Chenglong Hao, Tonghao Liu, Yongfeng Li, Mingde Feng, Anxue Zhang, Cheng-Wei Qiu, Shaobo Qu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/82236938070c4bfcb037950d33141f59 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Single-layer metasurface for ultra-wideband polarization conversion: bandwidth extension via Fano resonance
por: Zhongtao Zhang, et al.
Publicado: (2021) -
Realization of acoustic spin transport in metasurface waveguides
por: Yang Long, et al.
Publicado: (2020) -
Metasurface Antennas: New Models, Applications and Realizations
por: Marco Faenzi, et al.
Publicado: (2019) -
Machine-learning reprogrammable metasurface imager
por: Lianlin Li, et al.
Publicado: (2019) -
Simultaneous realization of slow and fast acoustic waves using a fractal structure of Koch curve
por: Jin Ding, et al.
Publicado: (2018)