Influence of springtime atmospheric circulation types on the distribution of air pollutants in the Arctic
<p>The transport and distribution of short-lived climate forcers in the Arctic are influenced by the prevailing atmospheric circulation patterns. Understanding the coupling between pollutant distribution and dominant atmospheric circulation types is therefore important, not least to understand...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Copernicus Publications
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/82434d6c21004eb490deabffccc16683 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:82434d6c21004eb490deabffccc16683 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:82434d6c21004eb490deabffccc166832021-11-12T12:13:18ZInfluence of springtime atmospheric circulation types on the distribution of air pollutants in the Arctic10.5194/acp-21-16593-20211680-73161680-7324https://doaj.org/article/82434d6c21004eb490deabffccc166832021-11-01T00:00:00Zhttps://acp.copernicus.org/articles/21/16593/2021/acp-21-16593-2021.pdfhttps://doaj.org/toc/1680-7316https://doaj.org/toc/1680-7324<p>The transport and distribution of short-lived climate forcers in the Arctic are influenced by the prevailing atmospheric circulation patterns. Understanding the coupling between pollutant distribution and dominant atmospheric circulation types is therefore important, not least to understand the processes governing the local processing of pollutants in the Arctic, but also to test the fidelity of chemistry transport models to simulate the transport from the southerly latitudes. Here, we use a combination of satellite-based and reanalysis datasets spanning over 12 years (2007–2018) and investigate the concentrations of NO<span class="inline-formula"><sub>2</sub></span>, O<span class="inline-formula"><sub>3</sub></span>, CO and aerosols and their co-variability during eight different atmospheric circulation types in the spring season (March, April and May) over the Arctic. We carried out a self-organizing map analysis of mean sea level pressure to derive these circulation types. Although almost all pollutants investigated here show statistically significant sensitivity to the circulation types, NO<span class="inline-formula"><sub>2</sub></span> exhibits the strongest sensitivity among them. The circulation types with low-pressure systems located over the northeast Atlantic show a clear enhancement of NO<span class="inline-formula"><sub>2</sub></span> and aerosol optical depths (AODs) in the European Arctic. The O<span class="inline-formula"><sub>3</sub></span> concentrations are, however, decreased. The free tropospheric CO is increased over the Arctic during such events. The circulation types with atmospheric blocking over Greenland and northern Scandinavia show the opposite signal in which the NO<span class="inline-formula"><sub>2</sub></span> concentrations are decreased and AODs are smaller than the climatological values. The O<span class="inline-formula"><sub>3</sub></span> concentrations are, however, increased, and the free tropospheric CO is decreased during such events.</p> <p>The study provides the most comprehensive assessment so far of the sensitivity of springtime pollutant distribution to the atmospheric circulation types in the Arctic and also provides an observational basis for the evaluation of chemistry transport models.</p>M. A. ThomasA. DevasthaleT. NygårdCopernicus PublicationsarticlePhysicsQC1-999ChemistryQD1-999ENAtmospheric Chemistry and Physics, Vol 21, Pp 16593-16608 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 Chemistry QD1-999 |
spellingShingle |
Physics QC1-999 Chemistry QD1-999 M. A. Thomas A. Devasthale T. Nygård Influence of springtime atmospheric circulation types on the distribution of air pollutants in the Arctic |
description |
<p>The transport and distribution of short-lived climate forcers in
the Arctic are influenced by the prevailing atmospheric circulation patterns.
Understanding the coupling between pollutant distribution and dominant
atmospheric circulation types is therefore important, not least to
understand the processes governing the local processing of pollutants in the Arctic, but also to test the fidelity of chemistry transport models to
simulate the transport from the southerly latitudes. Here, we use a
combination of satellite-based and reanalysis datasets spanning over 12 years (2007–2018) and investigate the concentrations of NO<span class="inline-formula"><sub>2</sub></span>, O<span class="inline-formula"><sub>3</sub></span>, CO and aerosols and their co-variability during eight different atmospheric circulation types in the spring season (March, April and May) over the Arctic. We carried out a self-organizing map analysis of mean sea level pressure to derive these circulation types. Although almost all pollutants investigated here show statistically significant sensitivity to the circulation types, NO<span class="inline-formula"><sub>2</sub></span> exhibits the strongest sensitivity among
them. The circulation types with low-pressure systems located over the
northeast Atlantic show a clear enhancement of NO<span class="inline-formula"><sub>2</sub></span> and aerosol optical
depths (AODs) in the European Arctic. The O<span class="inline-formula"><sub>3</sub></span> concentrations are,
however, decreased. The free tropospheric CO is increased over the Arctic
during such events. The circulation types with atmospheric blocking over
Greenland and northern Scandinavia show the opposite signal in which the
NO<span class="inline-formula"><sub>2</sub></span> concentrations are decreased and AODs are smaller than the
climatological values. The O<span class="inline-formula"><sub>3</sub></span> concentrations are, however, increased,
and the free tropospheric CO is decreased during such events.</p>
<p>The study provides the most comprehensive assessment so far of the
sensitivity of springtime pollutant distribution to the atmospheric
circulation types in the Arctic and also provides an observational basis for the evaluation of chemistry transport models.</p> |
format |
article |
author |
M. A. Thomas A. Devasthale T. Nygård |
author_facet |
M. A. Thomas A. Devasthale T. Nygård |
author_sort |
M. A. Thomas |
title |
Influence of springtime atmospheric circulation types on the distribution of air pollutants in the Arctic |
title_short |
Influence of springtime atmospheric circulation types on the distribution of air pollutants in the Arctic |
title_full |
Influence of springtime atmospheric circulation types on the distribution of air pollutants in the Arctic |
title_fullStr |
Influence of springtime atmospheric circulation types on the distribution of air pollutants in the Arctic |
title_full_unstemmed |
Influence of springtime atmospheric circulation types on the distribution of air pollutants in the Arctic |
title_sort |
influence of springtime atmospheric circulation types on the distribution of air pollutants in the arctic |
publisher |
Copernicus Publications |
publishDate |
2021 |
url |
https://doaj.org/article/82434d6c21004eb490deabffccc16683 |
work_keys_str_mv |
AT mathomas influenceofspringtimeatmosphericcirculationtypesonthedistributionofairpollutantsinthearctic AT adevasthale influenceofspringtimeatmosphericcirculationtypesonthedistributionofairpollutantsinthearctic AT tnygard influenceofspringtimeatmosphericcirculationtypesonthedistributionofairpollutantsinthearctic |
_version_ |
1718430562169913344 |