Optical information processing using dual state quantum dot lasers: complexity through simplicity
Abstract We review results on the optical injection of dual state InAs quantum dot-based semiconductor lasers. The two states in question are the so-called ground state and first excited state of the laser. This ability to lase from two different energy states is unique amongst semiconductor lasers...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/82697ef95c1b4d4ca63368cef9f5fb71 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:82697ef95c1b4d4ca63368cef9f5fb71 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:82697ef95c1b4d4ca63368cef9f5fb712021-12-05T12:17:33ZOptical information processing using dual state quantum dot lasers: complexity through simplicity10.1038/s41377-021-00670-y2047-7538https://doaj.org/article/82697ef95c1b4d4ca63368cef9f5fb712021-11-01T00:00:00Zhttps://doi.org/10.1038/s41377-021-00670-yhttps://doaj.org/toc/2047-7538Abstract We review results on the optical injection of dual state InAs quantum dot-based semiconductor lasers. The two states in question are the so-called ground state and first excited state of the laser. This ability to lase from two different energy states is unique amongst semiconductor lasers and in combination with the high, intrinsic relaxation oscillation damping of the material and the novel, inherent cascade like carrier relaxation process, endows optically injected dual state quantum dot lasers with many unique dynamical properties. Particular attention is paid to fast state switching, antiphase excitability, novel information processing techniques and optothermally induced neuronal phenomena. We compare and contrast some of the physical properties of the system with other optically injected two state devices such as vertical cavity surface emitting lasers and ring lasers. Finally, we offer an outlook on the use of quantum dot material in photonic integrated circuits.Bryan KelleherMichael DillaneEvgeny A. ViktorovNature Publishing GrouparticleApplied optics. PhotonicsTA1501-1820Optics. LightQC350-467ENLight: Science & Applications, Vol 10, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Applied optics. Photonics TA1501-1820 Optics. Light QC350-467 |
spellingShingle |
Applied optics. Photonics TA1501-1820 Optics. Light QC350-467 Bryan Kelleher Michael Dillane Evgeny A. Viktorov Optical information processing using dual state quantum dot lasers: complexity through simplicity |
description |
Abstract We review results on the optical injection of dual state InAs quantum dot-based semiconductor lasers. The two states in question are the so-called ground state and first excited state of the laser. This ability to lase from two different energy states is unique amongst semiconductor lasers and in combination with the high, intrinsic relaxation oscillation damping of the material and the novel, inherent cascade like carrier relaxation process, endows optically injected dual state quantum dot lasers with many unique dynamical properties. Particular attention is paid to fast state switching, antiphase excitability, novel information processing techniques and optothermally induced neuronal phenomena. We compare and contrast some of the physical properties of the system with other optically injected two state devices such as vertical cavity surface emitting lasers and ring lasers. Finally, we offer an outlook on the use of quantum dot material in photonic integrated circuits. |
format |
article |
author |
Bryan Kelleher Michael Dillane Evgeny A. Viktorov |
author_facet |
Bryan Kelleher Michael Dillane Evgeny A. Viktorov |
author_sort |
Bryan Kelleher |
title |
Optical information processing using dual state quantum dot lasers: complexity through simplicity |
title_short |
Optical information processing using dual state quantum dot lasers: complexity through simplicity |
title_full |
Optical information processing using dual state quantum dot lasers: complexity through simplicity |
title_fullStr |
Optical information processing using dual state quantum dot lasers: complexity through simplicity |
title_full_unstemmed |
Optical information processing using dual state quantum dot lasers: complexity through simplicity |
title_sort |
optical information processing using dual state quantum dot lasers: complexity through simplicity |
publisher |
Nature Publishing Group |
publishDate |
2021 |
url |
https://doaj.org/article/82697ef95c1b4d4ca63368cef9f5fb71 |
work_keys_str_mv |
AT bryankelleher opticalinformationprocessingusingdualstatequantumdotlaserscomplexitythroughsimplicity AT michaeldillane opticalinformationprocessingusingdualstatequantumdotlaserscomplexitythroughsimplicity AT evgenyaviktorov opticalinformationprocessingusingdualstatequantumdotlaserscomplexitythroughsimplicity |
_version_ |
1718372084431716352 |