Tassel Segmentation of Maize Point Cloud Based on Super Voxels Clustering and Local Features
Accurate and high-throughput maize plant phenotyping is vital for crop breeding and cultivation research. Tassel-related phenotypic parameters are important agronomic traits. However, fully automatic and fine tassel organ segmentation of maize shoots from three-dimensional (3D) point clouds is still...
Guardado en:
Autores principales: | ZHU Chao, WU Fan, LIU Changbin, ZHAO Jianxiang, LIN Lili, TIAN Xueying, MIAO Teng |
---|---|
Formato: | article |
Lenguaje: | EN ZH |
Publicado: |
Editorial Office of Smart Agriculture
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/827f9b5265f84a0eb7d5be756559b6cd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Cotton Phenotypic Trait Extraction Using Multi-Temporal Laser Point Clouds
por: YANG Xu, et al.
Publicado: (2021) -
Manual Correction of Voxel Misclassifications in Mesiotemporal Structures Does Not Alter Brain–Behavioral Results in an Episodic Memory Task
por: Francina Hartmann, et al.
Publicado: (2021) -
CDUNet: Cloud Detection UNet for Remote Sensing Imagery
por: Kai Hu, et al.
Publicado: (2021) -
PointMTL: Multi-Transform Learning for Effective 3D Point Cloud Representations
por: Yifan Jian, et al.
Publicado: (2021) -
A Dual Network for Super-Resolution and Semantic Segmentation of Sentinel-2 Imagery
por: Saüc Abadal, et al.
Publicado: (2021)