Morphology, molecular genetics, and bioacoustics support two new sympatric Xenophrys toads (Amphibia: Anura: Megophryidae) in southeast China.
Given their recent worldwide declines and extinctions, characterization of species-level diversity is of critical importance for large-scale biodiversity assessments and conservation of amphibians. This task is made difficult by the existence of cryptic species complexes, species groups comprising c...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8291b79afe3a411cb80ff823763a4767 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Given their recent worldwide declines and extinctions, characterization of species-level diversity is of critical importance for large-scale biodiversity assessments and conservation of amphibians. This task is made difficult by the existence of cryptic species complexes, species groups comprising closely related and morphologically analogous species. The combination of morphology, genetic, and bioacoustic analyses permits robust and accurate species identification. Using these methods, we discovered two undescribed Xenophrys species, namely Xenophrys lini sp. nov. and Xenophrys cheni sp. nov. from the middle range of Luoxiao Mountains, southeast China. These two new species can be reliably distinguished from other known congeners by morphological and morphometric differences, distinctness in male advertisement calls, and substantial genetic distances (>3.6%) based on the mitochondrial 16s and 12s rRNA genes. The two new species, together with X. jinggangensis, are sympatric in the middle range of Luoxiao Mountains but may be isolated altitudinally and ecologically. Our study provides a first step to help resolve previously unrecognized cryptic biodiversity and provides insights into the understanding of Xenophrys diversification in the mountain complexes of southeast China. |
---|