Application of local fully Convolutional Neural Network combined with YOLO v5 algorithm in small target detection of remote sensing image
This exploration primarily aims to jointly apply the local FCN (fully convolution neural network) and YOLO-v5 (You Only Look Once-v5) to the detection of small targets in remote sensing images. Firstly, the application effects of R-CNN (Region-Convolutional Neural Network), FRCN (Fast Region-Convolu...
Enregistré dans:
| Auteurs principaux: | Wentong Wu, Han Liu, Lingling Li, Yilin Long, Xiaodong Wang, Zhuohua Wang, Jinglun Li, Yi Chang |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Public Library of Science (PLoS)
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/82c2da1bc3904a87838e4ad3a9441368 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Application of local fully Convolutional Neural Network combined with YOLO v5 algorithm in small target detection of remote sensing image.
par: Wentong Wu, et autres
Publié: (2021) -
Fully automatic wound segmentation with deep convolutional neural networks
par: Chuanbo Wang, et autres
Publié: (2020) -
STransFuse: Fusing Swin Transformer and Convolutional Neural Network for Remote Sensing Image Semantic Segmentation
par: Liang Gao, et autres
Publié: (2021) -
YOLO Algorithm for Detecting People in Social Distancing System
par: Faisal Dharma Adhinata, et autres
Publié: (2021) -
Small Object Detection in Traffic Scenes Based on YOLO-MXANet
par: Xiaowei He, et autres
Publié: (2021)