Inferring collective dynamical states from widely unobserved systems
From infectious diseases to brain activity, complex systems can be approximated using autoregressive models. Here, the authors show that incomplete sampling can bias estimates of the stability of such systems, and introduce a novel, unbiased metric for use in such situations.
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/82ce44a5b8ed4fe98882d364db6aa974 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | From infectious diseases to brain activity, complex systems can be approximated using autoregressive models. Here, the authors show that incomplete sampling can bias estimates of the stability of such systems, and introduce a novel, unbiased metric for use in such situations. |
---|