Inferring collective dynamical states from widely unobserved systems
From infectious diseases to brain activity, complex systems can be approximated using autoregressive models. Here, the authors show that incomplete sampling can bias estimates of the stability of such systems, and introduce a novel, unbiased metric for use in such situations.
Enregistré dans:
Auteurs principaux: | Jens Wilting, Viola Priesemann |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/82ce44a5b8ed4fe98882d364db6aa974 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Sensor Selection and State Estimation for Unobservable and Non-Linear System Models
par: Thijs Devos, et autres
Publié: (2021) -
Model-free inference of direct network interactions from nonlinear collective dynamics
par: Jose Casadiego, et autres
Publié: (2017) -
STATISTICAL ESTIMATION OF UNOBSERVED ECONOMIC ACTIVITY
par: Galina V. Agentova
Publié: (2017) -
Phillips curve in Brazil: an unobserved components approach
par: Vicente da Gama Machado, et autres
Publié: (2014) -
Post-conception heat exposure increases clinically unobserved pregnancy losses
par: Tamás Hajdu, et autres
Publié: (2021)