The impact of myocardial compressibility on organ-level simulations of the normal and infarcted heart

Abstract Myocardial infarction (MI) rapidly impairs cardiac contractile function and instigates maladaptive remodeling leading to heart failure. Patient-specific models are a maturing technology for developing and determining therapeutic modalities for MI that require accurate descriptions of myocar...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hao Liu, João S. Soares, John Walmsley, David S. Li, Samarth Raut, Reza Avazmohammadi, Paul Iaizzo, Mark Palmer, Joseph H. Gorman, Robert C. Gorman, Michael S. Sacks
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/82d45691d36245a6ae9cd5b612ac0300
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:82d45691d36245a6ae9cd5b612ac0300
record_format dspace
spelling oai:doaj.org-article:82d45691d36245a6ae9cd5b612ac03002021-12-02T16:31:53ZThe impact of myocardial compressibility on organ-level simulations of the normal and infarcted heart10.1038/s41598-021-92810-y2045-2322https://doaj.org/article/82d45691d36245a6ae9cd5b612ac03002021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-92810-yhttps://doaj.org/toc/2045-2322Abstract Myocardial infarction (MI) rapidly impairs cardiac contractile function and instigates maladaptive remodeling leading to heart failure. Patient-specific models are a maturing technology for developing and determining therapeutic modalities for MI that require accurate descriptions of myocardial mechanics. While substantial tissue volume reductions of 15–20% during systole have been reported, myocardium is commonly modeled as incompressible. We developed a myocardial model to simulate experimentally-observed systolic volume reductions in an ovine model of MI. Sheep-specific simulations of the cardiac cycle were performed using both incompressible and compressible tissue material models, and with synchronous or measurement-guided contraction. The compressible tissue model with measurement-guided contraction gave best agreement with experimentally measured reductions in tissue volume at peak systole, ventricular kinematics, and wall thickness changes. The incompressible model predicted myofiber peak contractile stresses approximately double the compressible model (182.8 kPa, 107.4 kPa respectively). Compensatory changes in remaining normal myocardium with MI present required less increase of contractile stress in the compressible model than the incompressible model (32.1%, 53.5%, respectively). The compressible model therefore provided more accurate representation of ventricular kinematics and potentially more realistic computed active contraction levels in the simulated infarcted heart. Our findings suggest that myocardial compressibility should be incorporated into future cardiac models for improved accuracy.Hao LiuJoão S. SoaresJohn WalmsleyDavid S. LiSamarth RautReza AvazmohammadiPaul IaizzoMark PalmerJoseph H. GormanRobert C. GormanMichael S. SacksNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Hao Liu
João S. Soares
John Walmsley
David S. Li
Samarth Raut
Reza Avazmohammadi
Paul Iaizzo
Mark Palmer
Joseph H. Gorman
Robert C. Gorman
Michael S. Sacks
The impact of myocardial compressibility on organ-level simulations of the normal and infarcted heart
description Abstract Myocardial infarction (MI) rapidly impairs cardiac contractile function and instigates maladaptive remodeling leading to heart failure. Patient-specific models are a maturing technology for developing and determining therapeutic modalities for MI that require accurate descriptions of myocardial mechanics. While substantial tissue volume reductions of 15–20% during systole have been reported, myocardium is commonly modeled as incompressible. We developed a myocardial model to simulate experimentally-observed systolic volume reductions in an ovine model of MI. Sheep-specific simulations of the cardiac cycle were performed using both incompressible and compressible tissue material models, and with synchronous or measurement-guided contraction. The compressible tissue model with measurement-guided contraction gave best agreement with experimentally measured reductions in tissue volume at peak systole, ventricular kinematics, and wall thickness changes. The incompressible model predicted myofiber peak contractile stresses approximately double the compressible model (182.8 kPa, 107.4 kPa respectively). Compensatory changes in remaining normal myocardium with MI present required less increase of contractile stress in the compressible model than the incompressible model (32.1%, 53.5%, respectively). The compressible model therefore provided more accurate representation of ventricular kinematics and potentially more realistic computed active contraction levels in the simulated infarcted heart. Our findings suggest that myocardial compressibility should be incorporated into future cardiac models for improved accuracy.
format article
author Hao Liu
João S. Soares
John Walmsley
David S. Li
Samarth Raut
Reza Avazmohammadi
Paul Iaizzo
Mark Palmer
Joseph H. Gorman
Robert C. Gorman
Michael S. Sacks
author_facet Hao Liu
João S. Soares
John Walmsley
David S. Li
Samarth Raut
Reza Avazmohammadi
Paul Iaizzo
Mark Palmer
Joseph H. Gorman
Robert C. Gorman
Michael S. Sacks
author_sort Hao Liu
title The impact of myocardial compressibility on organ-level simulations of the normal and infarcted heart
title_short The impact of myocardial compressibility on organ-level simulations of the normal and infarcted heart
title_full The impact of myocardial compressibility on organ-level simulations of the normal and infarcted heart
title_fullStr The impact of myocardial compressibility on organ-level simulations of the normal and infarcted heart
title_full_unstemmed The impact of myocardial compressibility on organ-level simulations of the normal and infarcted heart
title_sort impact of myocardial compressibility on organ-level simulations of the normal and infarcted heart
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/82d45691d36245a6ae9cd5b612ac0300
work_keys_str_mv AT haoliu theimpactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT joaossoares theimpactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT johnwalmsley theimpactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT davidsli theimpactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT samarthraut theimpactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT rezaavazmohammadi theimpactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT pauliaizzo theimpactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT markpalmer theimpactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT josephhgorman theimpactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT robertcgorman theimpactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT michaelssacks theimpactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT haoliu impactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT joaossoares impactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT johnwalmsley impactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT davidsli impactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT samarthraut impactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT rezaavazmohammadi impactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT pauliaizzo impactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT markpalmer impactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT josephhgorman impactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT robertcgorman impactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
AT michaelssacks impactofmyocardialcompressibilityonorganlevelsimulationsofthenormalandinfarctedheart
_version_ 1718383820844040192