Effect of pulsed electromagnetic field treatment on programmed resolution of inflammation pathway markers in human cells in culture

Nicole J Kubat,1 John Moffett,2 Linley M Fray2 1Nicole Kubat Consulting, Pasadena, CA, USA; 2Life Science Department, Regenesis Biomedical, Inc., Scottsdale, AZ, USA Abstract: Inflammation is a complex process involving distinct but overlapping biochemical and molecular events that are highly regu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kubat NJ, Moffett J, Fray LM
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2015
Materias:
Acceso en línea:https://doaj.org/article/82dd5271854749d49821e69f52e328af
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:82dd5271854749d49821e69f52e328af
record_format dspace
spelling oai:doaj.org-article:82dd5271854749d49821e69f52e328af2021-12-02T00:53:52ZEffect of pulsed electromagnetic field treatment on programmed resolution of inflammation pathway markers in human cells in culture1178-7031https://doaj.org/article/82dd5271854749d49821e69f52e328af2015-02-01T00:00:00Zhttp://www.dovepress.com/effect-of-pulsed-electromagnetic-field-treatment-on-programmed-resolut-peer-reviewed-article-JIRhttps://doaj.org/toc/1178-7031 Nicole J Kubat,1 John Moffett,2 Linley M Fray2 1Nicole Kubat Consulting, Pasadena, CA, USA; 2Life Science Department, Regenesis Biomedical, Inc., Scottsdale, AZ, USA Abstract: Inflammation is a complex process involving distinct but overlapping biochemical and molecular events that are highly regulated. Pulsed electromagnetic field (PEMF) therapy is increasingly used to treat pain and edema associated with inflammation following surgery involving soft tissue. However, the molecular and cellular effects of PEMF therapy on pathways involved in the resolution of inflammation are poorly understood. Using cell culture lines relevant to trauma-induced inflammation of the skin (human dermal fibroblasts, human epidermal keratinocytes, and human mononuclear cells), we investigated the effect of PEMF on gene expression involved in the acute and resolution phases of inflammation. We found that PEMF treatment was followed by changes in the relative amount of messenger (m)RNAs encoding enzymes involved in heme catabolism and removal of reactive oxygen species, including an increase in heme oxygenase 1 and superoxide dismutase 3 mRNAs, in all cell types examined 2 hours after PEMF treatment. A relative increase in mRNAs encoding enzymes involved in lipid mediator biosynthesis was also observed, including an increase in arachidonate 12- and 15-lipoxygenase mRNAs in dermal fibroblasts and epidermal keratinocytes, respectively. The relative amount of both of these lipoxygenase mRNAs was elevated in mononuclear cells following PEMF treatment relative to nontreated cells. PEMF treatment was also followed by changes in the mRNA levels of several cytokines. A decrease in the relative amount of interleukin 1 beta mRNA was observed in mononuclear cells, similar to that previously reported for epidermal keratinocytes and dermal fibroblasts. Based on our results, we propose a model in which PEMF therapy may promote chronic inflammation resolution by mediating gene expression changes important for inhibiting and resolving inflammation. Keywords: acute inflammation, resolution phase, heme oxygenase, reactive oxygen species, eicosanoids, resolvins, cytokines, lipid mediatorsKubat NJMoffett JFray LMDove Medical PressarticlePathologyRB1-214Therapeutics. PharmacologyRM1-950ENJournal of Inflammation Research, Vol 2015, Iss default, Pp 59-69 (2015)
institution DOAJ
collection DOAJ
language EN
topic Pathology
RB1-214
Therapeutics. Pharmacology
RM1-950
spellingShingle Pathology
RB1-214
Therapeutics. Pharmacology
RM1-950
Kubat NJ
Moffett J
Fray LM
Effect of pulsed electromagnetic field treatment on programmed resolution of inflammation pathway markers in human cells in culture
description Nicole J Kubat,1 John Moffett,2 Linley M Fray2 1Nicole Kubat Consulting, Pasadena, CA, USA; 2Life Science Department, Regenesis Biomedical, Inc., Scottsdale, AZ, USA Abstract: Inflammation is a complex process involving distinct but overlapping biochemical and molecular events that are highly regulated. Pulsed electromagnetic field (PEMF) therapy is increasingly used to treat pain and edema associated with inflammation following surgery involving soft tissue. However, the molecular and cellular effects of PEMF therapy on pathways involved in the resolution of inflammation are poorly understood. Using cell culture lines relevant to trauma-induced inflammation of the skin (human dermal fibroblasts, human epidermal keratinocytes, and human mononuclear cells), we investigated the effect of PEMF on gene expression involved in the acute and resolution phases of inflammation. We found that PEMF treatment was followed by changes in the relative amount of messenger (m)RNAs encoding enzymes involved in heme catabolism and removal of reactive oxygen species, including an increase in heme oxygenase 1 and superoxide dismutase 3 mRNAs, in all cell types examined 2 hours after PEMF treatment. A relative increase in mRNAs encoding enzymes involved in lipid mediator biosynthesis was also observed, including an increase in arachidonate 12- and 15-lipoxygenase mRNAs in dermal fibroblasts and epidermal keratinocytes, respectively. The relative amount of both of these lipoxygenase mRNAs was elevated in mononuclear cells following PEMF treatment relative to nontreated cells. PEMF treatment was also followed by changes in the mRNA levels of several cytokines. A decrease in the relative amount of interleukin 1 beta mRNA was observed in mononuclear cells, similar to that previously reported for epidermal keratinocytes and dermal fibroblasts. Based on our results, we propose a model in which PEMF therapy may promote chronic inflammation resolution by mediating gene expression changes important for inhibiting and resolving inflammation. Keywords: acute inflammation, resolution phase, heme oxygenase, reactive oxygen species, eicosanoids, resolvins, cytokines, lipid mediators
format article
author Kubat NJ
Moffett J
Fray LM
author_facet Kubat NJ
Moffett J
Fray LM
author_sort Kubat NJ
title Effect of pulsed electromagnetic field treatment on programmed resolution of inflammation pathway markers in human cells in culture
title_short Effect of pulsed electromagnetic field treatment on programmed resolution of inflammation pathway markers in human cells in culture
title_full Effect of pulsed electromagnetic field treatment on programmed resolution of inflammation pathway markers in human cells in culture
title_fullStr Effect of pulsed electromagnetic field treatment on programmed resolution of inflammation pathway markers in human cells in culture
title_full_unstemmed Effect of pulsed electromagnetic field treatment on programmed resolution of inflammation pathway markers in human cells in culture
title_sort effect of pulsed electromagnetic field treatment on programmed resolution of inflammation pathway markers in human cells in culture
publisher Dove Medical Press
publishDate 2015
url https://doaj.org/article/82dd5271854749d49821e69f52e328af
work_keys_str_mv AT kubatnj effectofpulsedelectromagneticfieldtreatmentonprogrammedresolutionofinflammationpathwaymarkersinhumancellsinculture
AT moffettj effectofpulsedelectromagneticfieldtreatmentonprogrammedresolutionofinflammationpathwaymarkersinhumancellsinculture
AT fraylm effectofpulsedelectromagneticfieldtreatmentonprogrammedresolutionofinflammationpathwaymarkersinhumancellsinculture
_version_ 1718403449158107136