Latent periodic process inference from single-cell RNA-seq data
Traditional methods for determining cell type composition lack scalability, while single-cell technologies remain costly and noisy compared to bulk RNA-seq. Here, the authors present a highly efficient tool to measure cellular heterogeneity in bulk expression through robust integration of single-cel...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/82f67d25755c4db7be7422364cee5dd4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Traditional methods for determining cell type composition lack scalability, while single-cell technologies remain costly and noisy compared to bulk RNA-seq. Here, the authors present a highly efficient tool to measure cellular heterogeneity in bulk expression through robust integration of single-cell information. |
---|