Latent periodic process inference from single-cell RNA-seq data
Traditional methods for determining cell type composition lack scalability, while single-cell technologies remain costly and noisy compared to bulk RNA-seq. Here, the authors present a highly efficient tool to measure cellular heterogeneity in bulk expression through robust integration of single-cel...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/82f67d25755c4db7be7422364cee5dd4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:82f67d25755c4db7be7422364cee5dd4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:82f67d25755c4db7be7422364cee5dd42021-12-02T15:39:08ZLatent periodic process inference from single-cell RNA-seq data10.1038/s41467-020-15295-92041-1723https://doaj.org/article/82f67d25755c4db7be7422364cee5dd42020-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-15295-9https://doaj.org/toc/2041-1723Traditional methods for determining cell type composition lack scalability, while single-cell technologies remain costly and noisy compared to bulk RNA-seq. Here, the authors present a highly efficient tool to measure cellular heterogeneity in bulk expression through robust integration of single-cell information.Shaoheng LiangFang WangJincheng HanKen ChenNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-8 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Shaoheng Liang Fang Wang Jincheng Han Ken Chen Latent periodic process inference from single-cell RNA-seq data |
description |
Traditional methods for determining cell type composition lack scalability, while single-cell technologies remain costly and noisy compared to bulk RNA-seq. Here, the authors present a highly efficient tool to measure cellular heterogeneity in bulk expression through robust integration of single-cell information. |
format |
article |
author |
Shaoheng Liang Fang Wang Jincheng Han Ken Chen |
author_facet |
Shaoheng Liang Fang Wang Jincheng Han Ken Chen |
author_sort |
Shaoheng Liang |
title |
Latent periodic process inference from single-cell RNA-seq data |
title_short |
Latent periodic process inference from single-cell RNA-seq data |
title_full |
Latent periodic process inference from single-cell RNA-seq data |
title_fullStr |
Latent periodic process inference from single-cell RNA-seq data |
title_full_unstemmed |
Latent periodic process inference from single-cell RNA-seq data |
title_sort |
latent periodic process inference from single-cell rna-seq data |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/82f67d25755c4db7be7422364cee5dd4 |
work_keys_str_mv |
AT shaohengliang latentperiodicprocessinferencefromsinglecellrnaseqdata AT fangwang latentperiodicprocessinferencefromsinglecellrnaseqdata AT jinchenghan latentperiodicprocessinferencefromsinglecellrnaseqdata AT kenchen latentperiodicprocessinferencefromsinglecellrnaseqdata |
_version_ |
1718385998554988544 |