Latent periodic process inference from single-cell RNA-seq data

Traditional methods for determining cell type composition lack scalability, while single-cell technologies remain costly and noisy compared to bulk RNA-seq. Here, the authors present a highly efficient tool to measure cellular heterogeneity in bulk expression through robust integration of single-cel...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shaoheng Liang, Fang Wang, Jincheng Han, Ken Chen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/82f67d25755c4db7be7422364cee5dd4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:82f67d25755c4db7be7422364cee5dd4
record_format dspace
spelling oai:doaj.org-article:82f67d25755c4db7be7422364cee5dd42021-12-02T15:39:08ZLatent periodic process inference from single-cell RNA-seq data10.1038/s41467-020-15295-92041-1723https://doaj.org/article/82f67d25755c4db7be7422364cee5dd42020-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-15295-9https://doaj.org/toc/2041-1723Traditional methods for determining cell type composition lack scalability, while single-cell technologies remain costly and noisy compared to bulk RNA-seq. Here, the authors present a highly efficient tool to measure cellular heterogeneity in bulk expression through robust integration of single-cell information.Shaoheng LiangFang WangJincheng HanKen ChenNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-8 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Shaoheng Liang
Fang Wang
Jincheng Han
Ken Chen
Latent periodic process inference from single-cell RNA-seq data
description Traditional methods for determining cell type composition lack scalability, while single-cell technologies remain costly and noisy compared to bulk RNA-seq. Here, the authors present a highly efficient tool to measure cellular heterogeneity in bulk expression through robust integration of single-cell information.
format article
author Shaoheng Liang
Fang Wang
Jincheng Han
Ken Chen
author_facet Shaoheng Liang
Fang Wang
Jincheng Han
Ken Chen
author_sort Shaoheng Liang
title Latent periodic process inference from single-cell RNA-seq data
title_short Latent periodic process inference from single-cell RNA-seq data
title_full Latent periodic process inference from single-cell RNA-seq data
title_fullStr Latent periodic process inference from single-cell RNA-seq data
title_full_unstemmed Latent periodic process inference from single-cell RNA-seq data
title_sort latent periodic process inference from single-cell rna-seq data
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/82f67d25755c4db7be7422364cee5dd4
work_keys_str_mv AT shaohengliang latentperiodicprocessinferencefromsinglecellrnaseqdata
AT fangwang latentperiodicprocessinferencefromsinglecellrnaseqdata
AT jinchenghan latentperiodicprocessinferencefromsinglecellrnaseqdata
AT kenchen latentperiodicprocessinferencefromsinglecellrnaseqdata
_version_ 1718385998554988544