Latent periodic process inference from single-cell RNA-seq data
Traditional methods for determining cell type composition lack scalability, while single-cell technologies remain costly and noisy compared to bulk RNA-seq. Here, the authors present a highly efficient tool to measure cellular heterogeneity in bulk expression through robust integration of single-cel...
Guardado en:
Autores principales: | Shaoheng Liang, Fang Wang, Jincheng Han, Ken Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/82f67d25755c4db7be7422364cee5dd4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Single-nuclei RNA-seq on human retinal tissue provides improved transcriptome profiling
por: Qingnan Liang, et al.
Publicado: (2019) -
Detection and removal of barcode swapping in single-cell RNA-seq data
por: Jonathan A. Griffiths, et al.
Publicado: (2018) -
SCALE method for single-cell ATAC-seq analysis via latent feature extraction
por: Lei Xiong, et al.
Publicado: (2019) -
A web server for comparative analysis of single-cell RNA-seq data
por: Amir Alavi, et al.
Publicado: (2018) -
Evaluation of Cell Type Annotation R Packages on Single-cell RNA-seq Data
por: Qianhui Huang, et al.
Publicado: (2021)